Читаем Портрет трещины полностью

пряженного состояния и происходит по двум причинам. Прежде всего у границы образца составляющая упругих напряжений, перпендикулярная свободной поверхности, отсутствует. Остаются растягивающие напряжения, параллельные границе. Под их влиянием трещина старается распространиться ортогонально к кромке образца, под каким бы углом вначале она не двигалась. Но такому ходу вещей препятствует другой процесс. При разрушении по металлу движутся многочисленные группы упругих волн. Природа их различна и падать на поверхность образца они могут под любыми углами. Следовательно, и отражаются они произвольно. Потому взаимодействие их с трещиной в такой степени многовариант-но, что предсказать его с достоверностью очень трудно. В самом деле, в достаточно хрупких материалах трещина далеко не всегда выходит на поверхность под прямым углом. Нередко вблизи границы она способна совершать крутые пируэты, и не один. Особенно это проявляется при быстрых трещинах, потерявших равновесие и потому крайне чувствительных к различным, даже маломощным упругим импульсам. Такие трещины, возникшие, например, при ветвлении, способны с приближением к границе круто разворачиваться.

…взвивается, как гнев, но в перехлесте, свернувшись, как спираль, на полпути пружинит, разжимаясь в быстром росте…

(Р.-М. Рильке)

Иной раз трещина развивается, не выходя на поверхность тела. Но как только нагрузка достигает некоторых критических значений, она совершает мгновенный разворот и «выползает на свет». Столь необузданное и темпераментное ее поведение у поверхности заставляет принимать специальные меры. Суть их такова: если не предполагается сознательное использование отраженных волн, следует попробовать все возможные способы, чтобы исключить их влияние на растущую трещину. Иначе все надежды на устойчивое распространение трещины будут разрушены. И вместо гладкой поверхности раскола мы получим криволинейную и произвольно холмистую.

Что еще может помешать трещине быть такой, как ей «хочется»? Прежде всего внутренние остаточные напряжения, особенно если они меняются от точки к точке. На современном прокате, например, они не слишком

опасны. Сложнее переход трещины из зерна в зерно стали, создающий мелкую шероховатость раскола. Чувствительна трещина и к структурным составляющим. Здесь, однако, спасительно то, что с ростом скорости трещина становится всеядной и при 1000 м/с способна одинаково

успешно расти и по ферриту, и по перлиту. При таких скоростях трещина становится хрупкой и режет любые компоненты стали.

Ухудшают поверхность раскола дислокации, межзе-ренные границы и другие дефекты в стали. Однако с этим, пожалуй, ничего не поделаешь – это естественные ограничения метода. Можно считать, что самые мельчайшие неровности на сколе проката не могут быть меньше размера зерна в стали.

Очень важно вести холодную ломку металла так, чтобы не создавать в нем серьезной пластической деформации. Важно это только для того, чтобы металл можно было ломать легко, без больших затрат энергии. Нельзя допускать, чтобы деформация меняла структуру стали. Между тем опасность такого рода всегда есть, когда деформация велика. При этом могут возникнуть системы из многих микро- и макротрещин.

И если трещин много, то разрушение идет либо одновременно из многих центров, либо осложняется вследствие взаимодействия основной разделяющей магистральной трещины с другими. И в том, и в другом случае поверхность разрушения получается ущербной. Во избежание этого магистральной трещине намеренно дают «фору»; на прокат заранее наносят концентрацию напряжений. Он обеспечивает зарождение трещины там, где нужно, и облегчает ее подрастание до критических размеров. При этом другие трещины заранее обречены: они обязательно «проиграют» магистральной.

Мы уже знаем, что трещина неустойчива. И побуждений для этого у нее достаточно. Здесь и влияние структуры, и поля напряжения, и ветвление, и разнообразные волновые процессы и многое, многое другое.

Поэтому, если мы хотим использовать трещину в качестве инструмента и притом надежного, нужно создать такие условия, чтобы лишить ее подобных побуждений. Это совсем не исключает всех упомянутых ранее, часто случайных причин нестабильности разрушения. Нет, это означает лишь, что совершенно необходимо создать условия для стабилизации растущей микроскопической трещины, для чего есть два способа. Первый предполагает создание некоторого внешне наведенного макроскопического поля над всеми случайными упругими полями и эпизодами, которое, грубо говоря, подавляет все другие поля и обеспечивает однородное напряженное состо-

яние во всем районе распространяющегося разрушения.

Перейти на страницу:

Похожие книги

Гиперпространство
Гиперпространство

Инстинкт говорит нам, что наш мир трехмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Мичио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признается многими авторитетными учеными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести ученых к так называемой теории всего. Однако серьезной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Мичио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Мичио Каку

Физика / Образование и наука
Квантовые миры и возникновение пространства-времени
Квантовые миры и возникновение пространства-времени

Надеемся, что отсутствие формул в книге не отпугнет потенциальных читателей.Шон Кэрролл – физик-теоретик и один из самых известных в мире популяризаторов науки – заставляет нас по-новому взглянуть на физику. Столкновение с главной загадкой квантовой механики полностью поменяет наши представления о пространстве и времени.Большинство физиков не сознают неприятный факт: их любимая наука находится в кризисе с 1927 года. В квантовой механике с самого начала существовали бросающиеся в глаза пробелы, которые просто игнорировались. Популяризаторы постоянно твердят, что квантовая механика – это что-то странное, недоступное для понимания… Чтобы все встало на свои места, достаточно признать, что во Вселенной мы существуем не в одном экземпляре. Шонов Кэрроллов бесконечно много. Как и каждого из нас.Тысячи раз в секунду во Вселенной возникают все новые и новые наши копии. Каждый раз, когда происходит квантовое событие, мир дублируется, создавая копию, в которой квантовое событие так и не произошло.В квантовой механике нет ничего мистического или необъяснимого. Это просто физика.В формате PDF A4 сохранён издательский дизайн.

Шон Б. Кэрролл , Шон Майкл Кэрролл

Физика / Зарубежная образовательная литература / Образование и наука