А ведь не секрет, что человек плохо умеет анализировать свое поведение. «Огромное количество исследований по психологии, нейробиологии и когнитивистике показывает снова и снова, как плохо мы умеем вглядываться в себя, — говорит Грейнджер. — Мы не имеем понятия ни о собственном поведении, ни о процессах, которые стоят за ним». Грейнджер отмечает, что мы также плохо умеем принимать рациональные решения, точно рассказывать об увиденном и вспоминать то, что случилось совсем недавно. Но ограниченность возможностей человека как наблюдателя не означает, что когнитивные науки, основанные на наблюдениях, — полная чепуха.
Грейнджер просто считает, что это неподходящий инструмент для проникновения в тайны интеллекта.
«В вычислительной нейробиологии мы задаем вопрос: "Хорошо, что человеческий мозг
Выяснение вычислительных принципов мозга начинается с того, что ученые проверяют, чем занимаются в мозгу те или иные кластеры нейронов. Нейроны — это клетки, которые посылают и принимают электрохимические сигналы. Важнейшую часть их составляют аксоны (волокна, соединяющие нейроны между собой; именно они обычно являются отправителями сигнала), синапсы (соединения, через которые проходит сигнал) и дендриты (обычно получатели сигнала). В мозгу человека около ста миллиардов нейронов. Каждый из них соединен со многими десятками тысяч других нейронов. Такое обилие связей делает все операции мозга параллельными, а не последовательными, как у большинства компьютеров. В вычислительных терминах последовательная обработка данных означает, что операции выполняются по очереди, по одной. Параллельная обработка данных означает, что большое количество данных обрабатывается одновременно — иногда в одно и то же время проходят сотни тысяч или даже миллионы операций.
Представьте на мгновение, что вы переходите оживленную городскую улицу; подумайте, сколько информации — цвета, звуки, запахи, температура, ощущение асфальта под ногами — одновременно поступает при этом в ваш мозг через уши, глаза, нос, конечности и кожу. Если бы ваш мозг не был органом, способным обработать все это одновременно, он мгновенно выключился бы от перегрузки. Вместо этого ваши органы чувств собирают всю эту информацию, мозг пропускает ее через нейроны и обрабатывает, — а в результате вы ведете себя соответственно, останавливаетесь перед светофором и избегаете столкновений с другими пешеходами.
Группы нейронов работают вместе и объединяются в схемы, сильно напоминающие электронные. В электронной схеме протекает электрический ток через специальные элементы, такие как резисторы и диоды. В ходе этого процесса ток выполняет различные функции — включает свет, к примеру, или запускает косилку. Если вы составите список инструкций, которые приводят к выполнению этой функции или какого-то вычисления, вы получите компьютерную программу или алгоритм.
Кластеры нейронов в вашем мозгу образуют схемы, которые действуют как алгоритмы. При этом они не включают свет, а распознают лица, планируют отпуск или набирают на клавиатуре предложение. И все это время работают параллельно. Откуда исследователи знают, что происходит в этих нейронных кластерах? Попросту говоря, они собирают детальную информацию при помощи специальных инструментов визуального исследования мозга, начиная от электродов, вживленных непосредственно в мозг животных, и заканчивая такими аппаратами, как ПЭТ- и фМРТ-сканеры применительно к людям. Нейронные зонды внутри и снаружи черепа способны показать, что делают отдельные нейроны, а маркирование нейронов электрически чувствительными красками наглядно показывает, когда те или иные нейроны активны. Из этих и других методик следуют проверяемые гипотезы об алгоритмах, управляющих контурами мозга. Кроме того, начато определение точной функции некоторых отделов мозга. Уже больше десяти лет, к примеру, нейробиологи знают, что узнавание лиц происходит в части мозга, известной как веретенообразная извилина.
Постойте, но в чем же суть? Неужели вычислительные системы, построенные по образу и подобию мозга (подход вычислительной нейробиологии), работают лучше, чем те, что построены