Возбужденные атомы полупроводника оказываются на метастабильном энергетическом уровне. Возвращаясь в основное состояние, они и излучают квант света. Если возвращение атомов в равновесное состояние происходит самопроизвольно, вне связи с внешними воздействиями, то излучение оказывается некогерентным. Так излучают обычные светодиоды, используемые как индикаторы в электронной аппаратуре. Выпускаются и семисегментные цифровые индикаторы на основе светодиодов. Они применяются в некоторых калькуляторах и часах.
Наибольшее распространение в светодиодах получили такие полупроводники, как арсенид галлия (GaAs) и фосфид галлия (GaP). Используются и тройные соединения, например GaAlAs, GaAlP и др. В зависимости от материала и технологии изготовления получают красный, оранжевый, зеленый и даже синий цвета свечения. Выпускаются и ИК излучающие диоды. Светодиоды могут иметь размеры от нескольких миллиметров до долей миллиметра. Потребляемый ими ток составляет десятки миллиампер при напряжении 2… 3 В. Коэффициент полезного действия светодиодов невелик, и мощность оптического или ИК излучения не превосходит нескольких милливатт.
Полупроводниковый лазер имеет такой же излучающий
Полупроводниковые лазеры имеют заметно худшую когерентность излучения по сравнению с газовыми и даже твердотельными. Угол расходимости светового пучка у них тоже больше. Но зато полупроводниковые лазеры имеют и неоспоримые достоинства: миниатюрность, экономичность и надежность в работе, низковольтное питание. В ряде случаев эти преимущества оказываются решающими.
Итак, мы знаем, как генерируется оптическое излучение, проще говоря — свет. Теперь надо его принять, зарегистрировать. Для этой цели служат фотоприемники.
Собственно, с фотоприемниками мы уже знакомы по главе, посвященной телевидению. Вакуумные фотоэлементы и фотоумножители продержались значительно дольше радиоламп, но теперь и они уступают место миниатюрным и чувствительным кремниевым или арсенидгаллиевым фотодиодам. В полупроводниковых фотоприемниках наблюдается внутренний фотоэффект, кванты света «выбивают» электроны в атомах толщи полупроводника. Ставшие свободными электроны создают ток через
Различают два режима работы фотодиодов: собственно фотодиодный и фотовольтаический. В фотодиодном режиме на
В фотовольтаическом режиме на
Технология изготовления фотодиодов почти не отличается от технологии изготовления обычных полупроводниковых приборов. На кристалле полупроводника методом эпитаксиального выращивания или ионною легирования создают слои с