Читаем Посвящение в радиоэлектронику полностью

Проведя физический эксперимент, мы сделали только половину дела. Вторая половина, причем более важная, — осмысление и обработка результатов. Лучше и к тому же нагляднее изобразить результаты эксперимента графически, что мы сейчас и сделаем.

Отложим но горизонтальной оси частоту внешнего воздействия f, а по вертикальной оси — амплитуду колебаний маятника А. При очень низкой частоте внешнего воздействия (медленное движение руки) амплитуда колебаний А равна амплитуде внешнего воздействия В.

При резонансе, когда частота колебаний руки совпадает с собственной частотой маятника f0, амплитуда колебаний максимальна, что хорошо видно на графике. И наконец, когда частота внешнего воздействия намного больше частоты собственных колебаний f >> f0, амплитуда колебаний становится исчезающе малой. То, что мы получили на графике, называется кривой резонанса. Ее неоднократно экспериментально определяли для различных колебательных систем (маятников, мостов, кораблей, электрических цепей) и неоднократно рассчитывали теоретически.



Кривая резонанса.


Существует серьезная и весьма сложная наука теория колебаний, занимающаяся изучением различного рода колебательных движений в механике, гидроакустике, электронике и во многих других областях техники. Любопытно, что столь разнородные колебания описываются одними и теми же математическими уравнениями, что объясняется одинаковым (колебательным) характером движения. Разумеется, рассмотренный нами импровизированный маятник — грузик на ниточке — представляет для теории колебаний наипростейший случай.

Но мы опять увлеклись маятниками и чуть не забыли про электрический колебательный контур. Как в нем протекают процессы при воздействии внешнего напряжения? Да абсолютно так же!

Чтобы ввести в контур внешнее напряжение, придется разорвать один из проводов, соединяющих конденсатор с катушкой, и включить в этот разрыв источник внешней ЭДС В. Теперь у нас получился последовательный колебательный контур. Амплитуду колебаний будем наблюдать, измеряя напряжение А на конденсаторе контура. Это можно сделать с помощью осциллографа или вольтметра переменного тока. Собственная частота контура по-прежнему определяется индуктивностью и емкостью. Она рассчитывается по уже известной нам формуле Томсона



Колебательный контур с источником ЭДС.


Внимательный читатель скажет: «На странице 58 была другая формула!». На самом деле формула одна и та же, ведь частота колебаний обратно пропорциональна периоду f0 = 1/Т. А вот частоту внешнего воздействия напряжения В — мы теперь будем изменять от нуля до очень больших значений. Нулевая частота означает отсутствие колебаний, т. е. постоянное напряжение. Естественно, что в этом случае напряжение на конденсаторе А в точности равно приложенному B, ведь катушка для постоянного тока представляет очень малое сопротивление, а конденсатор — очень большое. При нулевой частоте внешнего напряжения мы получаем начальную точку кривой резонанса. При частоте внешнего воздействия, близкой к собственной частоте контура, отклик контура максимален и переменное напряжение на конденсаторе имеет амплитуду, намного большую амплитуды внешней ЭДС. Это пик резонансной кривой. А при очень высоких частотах отклик контура стремится к нулю, что объясняется увеличением реактивного сопротивления катушки и уменьшением реактивного сопротивления конденсатора. Одним словом, резонансная кривая получается точно такой же, как и для механического маятника-грузика на веревочке.

Возникает естественный вопрос: а насколько же амплитуда колебаний при резонансе Арез больше исходной амплитуды внешнего воздействия В. Это зависит от одной очень важной характеристики колебательной системы — ее добротности Q. Добротность равна отношению Арез/B. Чем меньше потери энергии колебаний внутри системы — на трение в маятнике, на преодоление током омического сопротивления катушки в контуре, тем выше добротность. О добротности мы уже говорили; она примерно равна числу колебаний, совершаемых в системе, «предоставленной самой себе», т. е. числу свободных затухающих колебаний.



Резонансные кривые контуров с различной добротностью (Q1 > Q2 > Q3)


На графике показаны резонансные кривые колебательных систем с разной добротностью — высокой Q1, умеренной Q2 и малой Q3.

В радиотехнических колебательных контурах обычно стремятся получать максимальную добротность. Это выгодно в тех случаях, когда используется лишь верхний, самый острый участок резонансной кривой, например для настройки на частоту радиовещательной станции. У таких контуров определяют полосу пропускания 2Δf как расстояние (по частоте) между точками, где амплитуда колебаний падает до 0,7 резонансного значения. Полоса пропускания опять-таки связана с добротностью:


Перейти на страницу:

Все книги серии Массовая радиобиблиотека

Похожие книги

Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
Межотраслевые правила по охране труда на автомобильном транспорте в вопросах и ответах. Пособие для изучения и подготовки к проверке знаний
Межотраслевые правила по охране труда на автомобильном транспорте в вопросах и ответах. Пособие для изучения и подготовки к проверке знаний

Рассмотрены основные положения Межотраслевых правил по охране труда на автомобильном транспорте (ПОТ Р М-027-2003), утвержденных Постановлением Министерства труда и социального развития Российской Федерации от 12 мая 2003 г. № 28, в виде вопросов и ответов.Пособие поможет специалистам в изучении Правил и при подготовке к проверке их знаний.Для работников автотранспортных организаций, автотранспортных цехов, участков иных организаций, предоставляющих услуги по техническому обслуживанию, ремонту и проверке технического состояния автотранспортных средств (станции технического обслуживания, авторемонтные и шиноремонтные организации, гаражи, стоянки и т. п.), а также для предпринимателей, осуществляющих перевозки грузов и пассажиров.

Валентин Викторович Красник

Технические науки / Образование и наука