Читаем Посвящение в радиоэлектронику полностью

Полупроводниковый диод пропускает ток только в одном направлении. Это направление называется прямым, а ток — прямым, или отпирающим. Допустимое значение прямого тока определяется площадью контакта и для мощных диодов может составлять десятки ампер. В то же время значение обратного тока обычно пренебрежимо мало и исчисляется микроамперами. Если нужно выпрямить еще больший ток, несколько полупроводниковых диодов соединяют параллельно.



Полупроводниковый диод пропускает ток только в одном направлении.


Схема простейшего выпрямителя на полупроводниковом диоде мало отличается от приведенной схемы выпрямителя с кенотроном. Она даже упрощается — становится ненужной обмотка силового трансформатора, питающая накал лампы. Но у такого выпрямителя, называемого однополупериодным, есть недостаток: ток в нагрузку течет лишь во время одного полупериода переменного напряжения.



Однополупериодный выпрямитель.


Чтобы «заставить работать» и второй полупериод, устанавливают второй диод и наматывают еще одну обмотку (вторичную) силового трансформатора. Напряжения на диодах UA и UB имеют противоположную полярность, они противофазны. Поэтому диоды выпрямителя работают поочередно: когда один диод проводит ток, другой заперт, и наоборот. У нас получился двухполупериодный выпрямитель. Ток в нагрузке теперь пульсирует с частотой 100 Гц, а не 50, как ранее.



Двухполупериодный выпрямитель.


В простейших случаях пульсации устраняются конденсатором большой емкости, когда же требуется более точное сглаживание, используют фильтр нижних частот.



Сглаживающий фильтр.


Аналогичными свойствами обладает и мостовая схема выпрямителя. В ней используются четыре диода, зато нужна только одна вторичная обмотка трансформатора. Ток в нагрузке мостового выпрямителя имеет точно такой же вид, как и у двухполупериодного. Специально для мостовых выпрямителей выпускаются блоки из четырех диодов в одном корпусе.



Мостовой выпрямитель.


Полупроводниковые диоды легки, компактны и отличаются очень высоким КПД. Область их применения обширна — от детектирования слабых сигналов в радиоприемнике до выпрямления тока при мощностях в сотни киловатт в грузовых электровозах. Теперь на вопрос, поставленный в заголовке раздела, мало-мальски сведущие в электронике люди ответят: «Выпрямить переменный ток? Разумеется, нет ничего проще!».


Триод из… полупроводника?


Инженерам, воспитанным на электровакуумной технике, эта мысль казалась нелепой еще в 50-х годах. Ведь триод — это радиолампа, содержащая катод, анод и управляющую сетку. Потенциал сетки управляет анодным током, и благодаря этому эффекту получают усиление сигналов. Вот как это делается: входное напряжение сигнала прикладывают между сеткой и катодом. Для того чтобы случайные электроны, осевшие на сетке, отправлялись обратно к катоду, включают резистор утечки сетки Rg. В анодную цепь последовательно с источником питания включают резистор нагрузки Ra. Под действием входного напряжения изменяется анодный ток. Каждую лампу характеризуют рядом параметров, в том числе и крутизной характеристики S = ΔIa/Δug - величиной, показывающей, на сколько изменится анодный ток при изменении потенциала сетки на 1 В. Принцип «чем больше, тем лучше» оправдывается и здесь. Обычно стремятся получить максимальную крутизну характеристики в рабочей точке, т. е. при заданных напряжениях на электродах. Анодный ток, проходя через резистор нагрузки, создает на нем некоторое падение напряжения. Его постоянная составляющая обычно не используется, а вот изменения, вызванные изменениями анодного тока, служат полезным выходным сигналом Uвых = ΔIa·Ra. Выразите изменения анодного тока через изменения сеточного напряжения ΔugUвх и подставьте в последнюю формулу.

У вас получится Uвых = S·Ra·Uвх. Произведение S·Ra является коэффициентом усиления лампы по напряжению. Хотя мы получили упрощенную формулу, она дает верное представление о значении коэффициента усиления.

Ну вот, мы посмотрели, как действует усилитель электрических сигналов на электровакуумной лампе. Его коэффициент усиления может достигать нескольких десятков, а иногда и сотен раз.



Усилитель на электровакуумной лампе (триоде).


Как же сделать триод из полупроводника? Эту задачу решили в 1948–1949 годах американские ученые Д. Бардин, В. Братгайн и У. Шокли, за что они были удостоены Нобелевской премии в области физики.

Давайте посмотрим, как им удалось сделать транзистор. Объединим два диода, как показано на рисунке. Область р в середине структуры называется базой, одна из n-областей — эмиттером, а другая — коллектором. Из самих названий ясно, что эмиттер должен что-то излучать, или испускать, а коллектор — это «что-то» собирать.



Структура транзистора n-p-n типа.


Перейти на страницу:

Все книги серии Массовая радиобиблиотека

Похожие книги

Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки