4. R. Ross, «Cell biology of atherosclerosis,» Annual Review of Physiology, vol. 57, pp. 791–804, 1995.
5. U. Förstermann, N. Xia, and H. Li, «Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis,» Circulation Research, vol. 120, no. 4, pp. 713–735, 2017.
6. M. A. Gimbrone Jr. and G. Garcia-Cardena, «Endothelial cell dysfunction and the pathobiology of atherosclerosis,» Circulation Research, vol. 118, no. 4, pp. 620–636, 2016.
7. Z. Wang, E. Klipfell, B. J. Bennett et al., «Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease,» Nature, vol. 472, no. 7341, pp. 57–63, 2011.
8. N. Kamada, S. U. Seo, G. Y. Chen, and G. Núñez, «Role of the gut microbiota in immunity and inflammatory disease,» Nature Reviews Immunology, vol. 13, no. 5, pp. 321–335, 2013.
9. T. Kamo, H. Akazawa, W. Suda et al., «Dysbiosis and compositional alterations with aging in the gut microbiota of patients with heart failure,» PLoS One, vol. 12, no. 3, article e0174099, 2017.
10. W. H. Tang, T. Kitai, and S. L. Hazen, «Gut microbiota in cardiovascular health and disease,» Circulation Research, vol. 120, no. 7, pp. 1183–1196, 2017.
11. Z. Liu, J. Li, H. Liu et al., «The intestinal microbiota associated with cardiac valve calcification differs from that of coronary artery disease,» Atherosclerosis, vol. 284, pp. 121–128, 2019.
12. F. H. Karlsson, F. Fåk, I. Nookaew et al., «Symptomatic atherosclerosis is associated with an altered gut metagenome,» Nature Communications, vol. 3, no. 1, article 1245, 2012.
13. H. Liu, C. Yang, Y. Jing, Z. Li, W. Zhong, and G. Li, «Ability of lactic acid bacteria isolated from mink to remove cholesterol: in vitro and in vivo studies,» Canadian Journal of Microbiology, vol. 59, no. 8, pp. 563-569, 2013.
14. J. Li, S. Lin, P. M. Vanhoutte, C. W. Woo, and A. Xu, «Akkermansia muciniphilaprotects against atherosclerosis by preventing metabolic endotoxemia-induced inflammation in ApoE-/– mice,» Circulation, vol. 133, no. 24, pp. 2434-2446, 2016.
15. Z. Jie, H. Xia, S. L. Zhong et al., «The gut microbiome in atherosclerotic cardiovascular disease,» Nature Communications, vol. 8, no. 1, article 845, 2017.
16. W. H. Tang, Z. Wang, D. J. Kennedy et al., «Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease,» Circulation Research, vol. 116, no. 3, pp. 448–455, 2015.
17. C. E. Cho and M. A. Caudill, «Trimethylamine-N-Oxide: Friend, Foe, or Simply Caught in the Cross-Fire?» Trends in Endocrinology and Metabolism, vol. 28, no. 2, pp. 121-130, 2017.
18. R. A. Koeth, B. S. Levison, M. K. Culley et al., «γ-Butyrobetaine is a proatherogenic intermediate in gut microbial metabolism of L-carnitine to TMAO,» Cell Metabolism, vol. 20, no. 5, pp. 799–812, 2014.
19. J. Chhibber-Goel, V. Singhal, N. Parakh, B. Bhargava, and A. Sharma, «The metabolite trimethylamine-N-oxide is an emergent biomarker of human health,» Current Medicinal Chemistry, vol. 24, no. 36, pp. 3942–3953, 2017.
20. W. H. Tang, Z. Wang, B. S. Levison et al., «Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk,» The New England Journal of Medicine, vol. 368, no. 17, pp. 1575–1584, 2013.
21. J. M. Brown and S. L. Hazen, «The gut microbial endocrine organ: bacterially derived signals driving cardiometabolic diseases,» Annual Review of Medicine, vol. 66, no. 1, pp. 343–359, 2015.
22. R. A. Koeth, Z. Wang, B. S. Levison et al., «Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis,» Nature Medicine, vol. 19, no. 5, pp. 576–585, 2013.
23. W. Zhu, J. C. Gregory, E. Org et al., «Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk,» Cell, vol. 165, no. 1, pp. 111–124, 2016.
24. K. A. Romano, E. I. Vivas, D. Amador-Noguez, and F. E. Rey, «Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide,» mBio, vol. 6, no. 2, article e02481, 2015.
25. B. J. Bennett, T. Q. A. Vallim, Z. Wang et al., «Trimethylamine-n-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation,» Cell Metabolism, vol. 17, no. 1, pp. 49–60, 2013.
26. X. Sun, X. Jiao, Y. Ma et al., «Trimethylamine N-oxide induces inflammation and endothelial dysfunction in human umbilical vein endothelial cells via activating ROS-TXNIP-NLRP3 inflammasome,» Biochemical and Biophysical Research Communications, vol. 481, no. 1–2, pp. 63–70, 2016.
27. K. M. Boini, T. Hussain, P. L. Li, and S. S. Koka, «Trimethylamine-N-oxide instigates NLRP3 inflammasome activation and endothelial dysfunction,» Cellular Physiology and Biochemistry, vol. 44, no. 1, pp. 152–162, 2018.
28. Kilmer S. McCully, Robert B. Wilson. (1975). Homocysteine theory of arteriosclerosis. Atherosclerosis. 22, 215–227;