А теперь ключевой факт: системы учета в западном мире фиксируют только ошибки совершения, наименее важные из двух типов ошибок!
Они не регистрируют ошибки несовершения. Поэтому в организации, которая неодобрительно относится к ошибкам и в которой замечаются только ошибки совершения, менеджеру надо только стараться не сделать чего-нибудь такого, что не следует делать. Поскольку ошибки несовершения не регистрируются, они часто проходят незамеченными. А если и замечены, ответственность за них редко наступает. В такой ситуации менеджер, который хочет как можно реже получать неодобрение, должен:
либо минимизировать ошибки совершения;
либо перекладывать ответственность за совершенные им ошибки на других.
Лучший способ достижения этого – ничего не делать или делать как можно меньше…»
Это и есть одна из главных причин, по которой организации и люди не научаются системному мышлению в ходе своей практической деятельности. Еще одна причина – этому мало где и мало кого учат. Между тем в условиях сегодняшнего открытого глобального и быстро меняющегося мира этому – т. е. пониманию систем – нужно учить
В 1934 г. в поэме «Скала» (The Rock) англо-американский поэт Томас Элиот написал такие строки:
Where is the Life we have lost in living?
Where is the wisdom we have lost in knowledge?
Where is the knowledge we have lost in the information?
В нашем вольном переводе эти строки выглядят так:
Где жизнь, затерявшаяся в бытии?
Где мудрость, затерявшаяся в знании?
Где знание, затерявшееся в информации?
Принято считать, что в этих строках впервые было отмечен тот факт, что информация, знание и понимание (мудрость), вообще говоря, не одно и то же и знание способно затеряться в информации. Примерно через 50 лет американский композитор Фрэнк Заппа (Frank Zappa) написал такие строки:
В научный обиход различие между информацией, знанием и пониманием ввел известный ученый Рассел Акофф. Он выразил это различие в виде иерархии (рис. 1.1):
В англоязычной литературе эта иерархия известна под аббревиатурой DIKW . В двух словах эту иерархию можно прокомментировать так.
Данные – это цифры, даты, символы и т. п., которые сами по себе ничего не значат.
Информация – это данные в определенном понятном нам контексте, данные, имеющие смысл и целевое назначение (т. е. данные в свете некоторой гипотезы или системы гипотез об их смысле).
Знание – это определенным образом обработанная и структурированная информация, которую можно использовать для принятия решений (т. е. информация, прошедшая формальную или содержательную проверку гипотез, которая не выявила противоречий).
Мудрость – это основанная на знании способность создавать новое знание и принимать решения в условиях неопределенности.
На самом деле границы между этими категориями очень зыбки и условны, и потому иерархия DIKW часто и заслуженно подвергается критике с разных сторон. Однако здесь нам важно обратить внимание не столько на проблему структурирования наших знаний, сколько на два существенных момента, какие не будут меняться при различных модификациях иерархии знаний. Первый момент состоит в том, что данные сами по себе не есть ни информация, ни тем более знания. Переход от набора цифр к их пониманию и выводам/решениям осуществляется путем анализа данных. Этот анализ может проводиться на самых разных уровнях: от поверхностного взгляда на цифры до применения самых навороченных статистических пакетов обработки данных. Но в полном соответствии с принципом 80/20 (подробнее о нем см. в книге [Кох 2012]) в 80 или более процентах ситуаций переход от данных к последующим этапам иерархии знаний можно успешно выполнить с помощью первичного анализа данных, который мы, следуя [Тьюки 1981], будем далее называть разведочным анализом данных (РАД).
Второй момент состоит в том, что ключевой компонент РАД – визуализация данных, т. е. представление данных в виде понятных и полезных картинок. Важно отметить, что роль картинок гораздо больше, нежели просто «сжать» информацию и представить ее в компактном виде. Зачастую они дают нам «новую» информацию, которой «как бы не было» при ином ее представлении. Дело в том, что правильная картинка позволяет нам увидеть не только сами значения данных, но и их связь друг с другом, а также наличие тех или иных особенностей и структур в поведении данных, не обнаруживаемых при их текстовом или табличном представлении.