Читаем Правда и ложь в истории великих открытий полностью

Эти несколько зависших капель, размышлял Милликен, имеют как раз те массу и заряд, которые необходимы для того, чтобы электрическое поле скомпенсировало эффект гравитации. Тогда получалось, что изначальный конденсат состоял из капель, с разными зарядами. Остатки конденсата натолкнули его еще на одну мысль. Как он впоследствии писал в своей статье, датированной 1910 годом, эти замершие на одном месте отдельные капли «стали первым убедительным и неопровержимым доказательством в пользу единичности структуры электричества». Размышлял он довольно просто. Совпадение зарядов отдельных капель и противодействующих им сил было настолько точным, что их нахождение на одном месте красноречиво говорило в пользу наличия стандартной шкалы измерения электрических зарядов. Бесконечно меняющиеся возмущения в эфире никогда бы не смогли дать такого совпадения.

Результаты, полученные Милликеном, не ограничивались только этим наблюдением. Меняя электрическое поле, он получил возможность выбирать нужные ему капли и удерживать их неподвижно, подавая соответствующее напряжение. Снятие напряжения приводило к тому, что капли беспрепятственно падали и можно было определить их массу, пользуясь дифференциальными уравнениями сопротивления воздуха для сфер различного размера. Эти формулы и две полученные им величины позволяли рассчитать электрический заряд каждой капли. Многократно проделав этот эксперимент, Милликен получил огромное удовлетворение оттого, что отношение между зарядами было именно таким, как предсказывала атомная теория. «Величины зарядов всегда находились в пределах погрешности измерений моего секундомера, — писал он впоследствии, — т. е. 1, 2, 3, 4 или какое-то иное число, кратное минимальному заряду капли, который мне удавалось измерить». Это наименьшее число оказалось зарядом одного электрона. Что еще более примечательно, во время этих экспериментов, когда капля удерживалась в камере, часто было видно, как она дрейфует в электрическом поле. Милликен быстро понял, что здесь он наблюдает атмосферные ионы, которые «садились» на каплю, меняя ее электрический заряд. «Мы могли наблюдать тот самый момент, когда ион впрыгивал в каплю или выпрыгивал из нее!» Его восхищению не было предела.

ЗАРЯЖЕН, ЗНАЧИТ, ВИНОВЕН

В феврале 1910 года Милликен опубликовал описание своего нового метода в престижном «Философском журнале»[4]. Приняв значение e равным -4,65 x 10-10 ед. СГСЭ, он представил данные, на которых основывалась эта цифра. Стилистически эта статья выглядела очень необычно. Проведя серию экспериментов, физики обычно решают, результаты каких экспериментов учитывать, а каких — нет, ведь некоторые опыты оказываются неудачными. Есть случаи, когда полученные данные столь неожиданны, что логично объяснить их вкравшейся ошибкой. Правда, стремление понять, почему появился вдруг такой странный результат, иногда приводит к Нобелевской премии. Но чаще всего он возникает из-за того, что один из исследователей просто не сумел соблюсти выбранную методику. Вот как об этом пишет американский генетик Феодосий Добжанский[5]:

Лишь некоторым экспериментаторам везет настолько, что во всех их экспериментах не бывает ошибок или неудач, поэтому нет ничего удивительного в том, что такие ошибки случаются… Вероятность получения ложных результатов очень высока, и потому между учеными существует негласная договоренность не учитывать необъяснимые результаты.

Слова Добжанского указывают на то, что исключение отдельных результатов — не обязательно порочная научная практика. Вероятность того, что вместе с водой выплеснут и ребенка, очень мала. Тем не менее ученые редко признаются в том, что подвергают результаты исследований определенной селекции. Большинство из них инстинктивно делают вид, будто они честно идут туда, куда ведут результаты их опытов. По крайней мере, в своей первой статье Милликен выглядел явным исключением из общего числа и производил впечатление очень простодушного человека: он описывал все свои опыты, отмечая каждый эксперимент одной, двумя или тремя звездочками в зависимости от того, насколько удачно, по его мнению, тот прошел. Его расчеты среднего значения е включали дифференциальное статистическое взвешивание в зависимости от того, сколько звезд получил эксперимент.

Перейти на страницу:

Все книги серии Galileo

Похожие книги

12 недель в году
12 недель в году

Многие из нас четко знают, чего хотят. Это отражается в наших планах – как личных, так и планах компаний. Проблема чаще всего заключается не в планировании, а в исполнении запланированного. Для уменьшения разрыва между тем, что мы хотели бы делать, и тем, что мы делаем, авторы предлагают свою концепцию «года, состоящего из 12 недель».Люди и компании мыслят в рамках календарного года. Новый год – важная психологическая отметка, от которой мы привыкли отталкиваться, ставя себе новые цели. Но 12 месяцев – не самый эффективный горизонт планирования: нам кажется, что впереди много времени, и в результате мы откладываем действия на потом. Сохранить мотивацию и действовать решительнее можно, мысля в рамках 12-недельного цикла планирования. Эта система проверена спортсменами мирового уровня и многими компаниями. Она поможет тем, кто хочет быть эффективным во всем, что делает.На русском языке публикуется впервые.

Брайан Моран , Майкл Леннингтон

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
История Франции. С древнейших времен до Версальского договора
История Франции. С древнейших времен до Версальского договора

Уильям Стирнс Дэвис, профессор истории Университета штата Миннесота, рассказывает в своей книге о самых главных событиях двухтысячелетней истории Франции, начиная с древних галлов и заканчивая подписанием Версальского договора в 1919 г. Благодаря своей сжатости и насыщенности информацией этот обзор многих веков жизни страны становится увлекательным экскурсом во времена антики и Средневековья, царствования Генриха IV и Людовика XIII, правления кардинала Ришелье и Людовика XIV с идеями просвещения и величайшими писателями и учеными тогдашней Франции. Революция конца XVIII в., провозглашение республики, империя Наполеона, Реставрация Бурбонов, монархия Луи-Филиппа, Вторая империя Наполеона III, снова республика и Первая мировая война… Автору не всегда удается сохранить то беспристрастие, которого обычно требуют от историка, но это лишь добавляет книге интереса, привлекая читателей, изучающих или увлекающихся историей Франции и Западной Европы в целом.

Уильям Стирнс Дэвис

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Образование и наука
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература