Читаем Предчувствия и свершения. Книга 2. Призраки полностью

Итак, мнения судей разделились. Вся масса предыдущих опытов свидетельствовала о работоспособности телескопов, микроскопов и очков. Совокупность столь многочисленных и достоверных опытов надежно доказывала правильность геометрической лучевой оптики, ее применимость при расчетах оптических инструментов и построениях оптических изображений в таких инструментах. Один опыт, пока один-единственный опыт, противоречил всем остальным: вид изображения определяется диафрагмой.

Какова же роль линз? Что-то было неблагополучно с геометрической оптикой. Речь шла не о недостаточной точности. Физики и конструкторы знали, что геометрическая оптика позволяет построить чрезвычайно точное изображение, если в построении изображения в реальном приборе, а не на бумаге, участвуют только лучи, идущие под малыми углами к оси прибора. Если не обрезать при помощи диафрагм лучи, идущие более круто к оси, то изображение исказится. Поэтому во всех высококачественных оптических инструментах имеются дополнительные диафрагмы, ограничивающие наклон лучей. В приборах попроще эту роль выполняет оправа объектива.

Речь шла об ином. О совершенно непонятном. Прозорливость Аббе проявилась в том, что он, подобно хорошему детективу, связал неожиданное наблюдение с фактами и обстоятельствами, казалось, очень отдаленными. И, как хороший детектив, потянув за кончик нити, размотал клубок.

Встреча двух эпох

Оказалось, что действие диафрагмы в оптических приборах не сводится к геометрическому ограничению пучков лучей. Диафрагма одновременно вызывает дифракцию света. Но дифракция не может быть объяснена при помощи геометрической оптики. Это сфера волновой оптики. Недаром явления дифракции и интерференции привели к победе волновой теории света над корпускулярной теорией. Даже Ньютону, считавшему свет частицами, корпускулами, было ясно, что ему присуща некая внутренняя периодичность.

Волновая теория приняла эту периодичность за основу. Дифракция и интерференция света потеряли всю свою загадочность. Они объяснялись столь же просто, как дифракция и интерференция звука или волн на поверхности воды — каждый видел, как морские волны огибают препятствия, как гасят или усиливают друг друга.

Древняя геометрическая оптика ни в коей мере не была отвергнута волновой теорией. Просто стало понятным, почему она не в силах справиться с проблемой дифракции и интерференции. Более того, она приобрела в волновой оптике надежный фундамент. Геометрическая оптика оказалась частным случаем, предельным случаем волновой оптики. Простые формулы геометрической оптики, известные каждому школьнику, непринужденно получаются из громоздких формул волновой оптики в тех случаях, когда можно считать длину световой волны бесконечно малой. Но «бесконечно малая» — это математическое понятие. Конечно, математики дают определение этому понятию. Физики подходят к делу более конкретно. Все измерения в физике конкретны. Поэтому требуется указать, по сравнению с чем бесконечно мала, или, попросту, очень мала данная величина. G точки зрения физика, достаточным основанием для перехода от формул волновой оптики к формулам геометрической оптики является условие малости длины волны света по сравнению с самым маленьким отверстием в оптическом инструменте. Но оптик знает и другое. Формулы, полученные при таком жестком условии, остаются применимыми и полезными, когда условие бесконечной малости заменяется не очень определенным условием «достаточной малости». Например, в большинстве случаев «меньше в 3 раза» оказывается достаточным, если не вникать в тонкие детали. Зато в других случаях «меньше в миллион раз» — совершенно недостаточно. Ведь иногда важна мелочь, а она уже исключена из рассмотрения.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже