Читаем Предчувствия и свершения. Книга 2. Призраки полностью

По-видимому, первым, кто догадался извлечь пользу из того, что. свиль не приводит к поглощению света, а лишь изменяет путь его распространения, был Тёплер, оптик, живший в конце прошлого века. Он придумал простейший метод обнаружения свилей в стеклянных заготовках. Для этого нужно взять точечный источник света или попросту любой источник малых размеров, но яркий. По тем временам лучше всего подходила вольтова дуга. Если такой источник есть, дальнейшее зависит от размера объекта, подлежащего исследованию. Когда он велик, например, это большой кусок стекла, то опыт следует проводить в темной комнате с черными стенами. Нужен белый экран и непрозрачная заслонка, которую вдвигают между источником и экраном так, чтобы она своим краем только-только закрыла экран от источника. Как только экран стал темным, заслонку надо закрепить. Итак, экран темный. Можно начинать исследование куска стекла, который прячется за экраном. Его выдвигают из-за экрана так, чтобы он оказался освещенным. Если свилей нет, экран останется темным. Но если в куске есть свиль, она обязательно нарушит прямолинейность распространения света и часть его попадет на экран. Вот и вся механика опыта. Распределение света на экране позволяет судить о величине неоднородностей и их расположении в массе стекла. Этот простейший метод и его модификации носят имя Тёплера. Иногда его называют методом затемненного поля зрения.

В более сложном исполнении Тёплеровская установка применяется не только для исследования качества стекла, но и для того, чтобы сделать видимыми потоки воздуха в аэродинамических трубах или фотографировать волны, возбужденные в воздухе летящими пулями и снарядами.

Этим же методом воспользовались микроскописты для наблюдения биологических объектов. Прозрачный объект, отдельные части которого различаются только величиной показателя преломления, на Тёплеровской установке «проявится» во всех деталях.

У некоторых читателей, наверное, возник вопрос: а как же справлялся Левенгук в те времена, когда такой установки еще не было? Ведь он как раз и наблюдал бактерии и инфузории, а большинство из них — прозрачные слабоокрашенные объекты. Левенгук ничего не знал о природе света и о процессе возникновения оптического изображения. Как же он видел то, что не должно быть видимо без принятия неведомых ему мер?

Левенгук был прирожденным экспериментатором. Изготовив свой микроскоп, он убедился в том, что хорошие изображения получаются только при очень ярком освещении. Для получения требуемой яркости он направлял на объект свет солнца или свечи, сконцентрированный при помощи вогнутого зеркала. Наилучшее изображение получалось, когда свет падал на объект сзади, под углом около 45°. С зеркалами, изготовленными Левенгуком, как раз и реализовались условия Тёплеровского метода. Описания вида некоторых бактерий и красных кровяных шариков, направленные Левенгуком в Лондонское королевское общество, подтверждают, что он, не подозревая этого, наблюдал рефракционные эффекты. К сожалению, Левенгук хранил методы наблюдения в тайне. Потомкам пришлось повторить все сначала, правда, на совершенно новом уровне.

Вперед с предельной осторожностью

Дальнейший прогресс микроскопии связан с отказом не только от видимого света, но и от использования невидимых ультрафиолетовых и еще более коротких электромагнитных волн. Настала— очередь применения частиц вещества. Но возможность создать микроскоп, работающий при помощи частиц, возникла только в результате длительного развития науки в направлении, не имеющем ничего общего с микроскопом. Она возникла после того, как удалось разобраться в важнейшей проблеме естествознания — проблеме взаимоотношений частиц и волн.

И тут мы должны вернуться из двадцатых годов к началу века, к истокам квантовой науки, к Эйнштейну, которого глубоко тревожило разделение оптических явлений на две категории. Одни из этих явлений легко объяснялись волновой теорией и были совершенно непонятны с квантовой точки зрения. Другие, совершенно непонятные с волновой точки зрения, непринужденно вытекали из квантового подхода. Какая загадка скрывалась под этим противоречием?

В течение десяти лет Эйнштейн настойчиво стремился понять суть дела. Нет, он не пытался построить новую теорию, способную устранить противоречия и все объяснить. Он понимал сложность проблемы, чувствовал, что время окончательных выводов еще не пришло. Эйнштейн был гением, и его гениальность проявилась в том, что он с самого начала принял реальность внутреннего единства волновых и корпускулярных свойств света, понял, что квантовая структура излучения — неизбежное следствие двуединой природы света. И, подобно Ньютону, предоставив будущим исследователям изучение сущности этого единства, показал, как при помощи фотонов (частиц, или квантов света, введенных им в 1905 году) можно объяснить то, что невозможно объяснить лишь на основе однобоких — волновых или примитивных корпускулярных — представлений.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже