Читаем Предчувствия и свершения. Книга 2. Призраки полностью

Эйнштейн относился к каждому человеку со столь большим уважением, что не мог ни отказаться, ни ответить сухо или лаконично, как это сделало бы большинство ученых, углубленных в свое дело и ценивших время. Мало кто был способен к столь полному и постоянному самоуглублению, как Эйнштейн. Но свой долг перед человечеством он ставил превыше всего. Он ответил статьей, которая подчеркивает органичную связь между открытиями науки и жизнью общества. Заголовок «Эксперимент Комптона» снабжен подзаголовком «Существует ли наука ради самой науки?»3.

«На этот вопрос, — пишет автор, — с одинаковой решительностью можно ответить и «да», и «нет», смотря по тому, как его понимать. Ученые должны служить науке ради самой науки, не задумываясь о практических результатах. Иначе, потеряв из виду фундаментальные закономерности, наука захирела бы. Она не выполняла бы также и своей великой просветительной миссии, заключающейся в том, чтобы пробуждать и поддерживать в массах стремление к познанию причинных связей. Но эта великая миссия — быть хранительницей одного из самых ценных идеалов человечества — показывает также, до какой степени наука может существовать ради самой науки. Сообщество ученых можно уподобить органу тела всего человечества, который питается его кровью и выделяет жизненно важный гормон, необходимый всем частям этого тела, чтобы оно не погибло. Это вовсе не значит, что каждый человек должен до пресыщения пичкать себя ученостью и разными научными фактами… Не поможет в решении научных вопросов и широкая гласность. Но каждому мыслящему человеку надо предоставить возможность познакомиться с большими научными проблемами его эпохи, даже если его положение в обществе не позволяет ему посвятить значительную долю своего времени и сил размышлениям над теоретическими проблемами. Только выполняя эту важную задачу, наука приобретает, с точки зрения общества, права на существование.

С этой точки зрения я и хочу рассказать далее о важном эксперименте, касающемся света, или электромагнитного излучения, и выполненном примерно год назад американским физиком Комптоном. Чтобы понять полностью значение эксперимента, мы должны представить себе то чрезвычайно странное положение, в котором находится теперь учение об излучении…»

И Эйнштейн делится сомнениями, которых накопилось так много, что физике пора было бы избавиться от них…

«Теперь, — пишет он, — мы имеем две теории света, обе необходимые и — как приходится признать сегодня — существующие без всякой логической взаимосвязи, несмотря на двадцать лет колоссальных усилий физиков-теоретиков. Квантовая теория света… объяснила так много фактов, что она должна содержать значительную долю истины. Комптон нашел, что рентгеновский свет, рассеянный соответствующими веществами, действительно испытывает изменение частоты, требуемое квантовой (но не волновой) теорией. Положительный результат опыта Комптона показывает, что излучение ведет себя так, как если бы оно состояло из дискретных корпускул не только в смысле передачи энергии, но и в смысле передачи количества движения».

Так заканчивает свою статью Эйнштейн.

Продолжим наш рассказ о «квантовом бильярде».

Примерно в это время к незримому бильярдному столу склонился еще один гений.

В 1919 году, после демобилизации, военный радиотелеграфист Луи де Бройль возобновил в лаборатории своего брата Мориса исследования фотоэффекта рентгеновских лучей, прерванные войной. Здесь начался его путь на передний фронт науки к тесному соприкосновению с главными проблемами, смущавшими физиков того времени. Именно загадка фотоэффекта привела Эйнштейна к открытию квантов света. Бор связал кванты света со строением атома. Де Бройль дерзко пытался примирить все эти отдельные открытия между собой. Вместе с братом он стремился прояснить зависимость энергии фотоэлектронов от свойств излучения, порывавшего их связь с атомами вещества.

Это была лишь подготовка, начальный класс, из которого ученик разом вознесся к высшим достижениям науки. Он обнаружил две глубокие, поразившие его аналогии. Первая — поведение свободных электронов во многом напоминало поведение рентгеновских лучей… Вторая — общие уравнения механики, уравнения Гамильтона, имели сходство с современными уравнениями волновой оптики… Вот намеки, известные, несомненно, многим. Для того чтобы их правильно понять и истолковать, понадобился, как когда-то было с Аббе, не только талант, но и подходящий настрой мыслей. Такой настрой по воле случая получил де Бройль, изучая фотоэффект и рентгеновские лучи. Ход его мыслей: между электронами и рентгеновскими лучами, несомненно, проявляется глубокая общность. Общность частиц — электронов и волн — рентгеновских лучей. По Эйнштейну свет (а значит, и рентгеновские лучи) — поток отдельных порций энергии, во многом обладающих свойствами частиц… Может быть, правомочно и обратное положение: частицы — электроны обладают какими-то волновыми свойствами?

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже