Читаем Предчувствия и свершения. Книга 2. Призраки полностью

Теперь нужно определить, как следует формулировать законы природы, если система движется с постоянным ускорением или испытывает действие поля тяжести, не изменяющего в пространстве. Можно ли записать законы природы на языке математики так, чтобы их вид не подвергался изменениям при равноускоренных движениях в однородных гравитационных полях. Будет ли эта запись отличаться от той, к которой привела его теория относительности? Естественным кажется отрицательный ответ. Ведь мы знаем законы природы, пригодные в поле тяжести Земли. Они не позволяют предполагать что-либо неожиданное. Но, присмотревшись внимательнее, мы заметим, что все наблюдения осуществлялись в очень узком интервале, когда расстояние от места наблюдения до центра Земли изменялось только на несколько километров, примерно на 1/1000 часть земного радиуса. При этом потенциал поля тяжести, характеризующий энергию тела в гравитационном поле Земли, меняется незначительно.

Анализ показывает, что при таких малых изменениях что-либо заметить очень трудно. Но если измерять точно или производить измерения на сильно различающихся высотах, то влияние изменения поля тяжести станет заметно. Так, например, на высоте 10 км часы идут быстрее, чем на поверхности Земли, примерно на одну десятимиллиардную часть. Секунда на вершине Эвереста почти на одну десятимиллиардную долю короче, чем у поверхности океана. Сейчас, после изобретения атомных часов, это подтверждено с большой точностью. В 1907 году о таком опыте нельзя было и мечтать. Но Эйнштейн нашел более доступную возможность проверки: он оценил, что часы на поверхности Солнца, из-за огромной силы тяжести, действующей там, должны идти на две миллионные доли медленнее, чем на поверхности Земли. Для проверки предсказания можно использовать в качестве часов атомы и сравнить длину волны света, испускаемого ими на Земле и на Солнце (надо рассчитать и измерить сдвиг спектральных линий атомов на Солнце по отношению к спектральным линиям тех же атомов на Земле). Однако в то время и такое измерение было весьма трудным.

Эйнштейн нашел еще одно следствие, вытекающее из распространения принципа относительности на ускоренные системы и на поле тяготения. Он показал, что в ускоренных системах свет распространяется не по прямой, а по кривой линии, форма которой зависит от ускорения. Значит, луч света должен искривляться и в поле тяжести. Искривление луча света должно подтверждаться изменением хода часов. Раз в различных участках поля тяготения время течет по-разному, то есть часы идут с разной скоростью — быстрее там, где оно мало, и медленнее там, где оно велико, то, измеряя скорость света при помощи этих часов, мы получим различные величины. А раз так, то свет ведет себя в поле тяжести, как в среде, где его скорость зависит от свойств среды. Например, в земной атмосфере, плотность которой изменяется с высотой, изменяется с высотой и скорость света. Ведь она постоянна только в пустоте и при отсутствии поля тяжести.

Таким образом, поле тяжести искривляет лучи света в пустоте так же, как их искривляет изменение плотности неоднородной атмосферы.

Вот второе предсказание, которое следует подтвердить или опровергнуть опытом. Искривление лучей света очень мало. Заметить его в лабораторных экспериментах невозможно.

Эйнштейн поясняет, что полученный им результат является прямым следствием связи между массой и энергией. Но если раньше эта связь была установлена только для инертной массы, то теперь стало ясно, что то же самое справедливо для тяготеющей массы. Энергия обладает не только инерцией, но и весом.

Так был совершен первый шаг. Эйнштейну удалось распространить принцип относительности на системы, испытывающие равномерное прямолинейное ускорение и вскрыть глубокую связь между ускорением и тяготением, неведомую ранее связь между массой и энергией. Ему удалось указать на два очень трудных опыта, способных подтвердить новую точку зрения.

Счастливые годы

Еще два года в Берне, где восемь часов службы в патентном бюро давали ежедневно по восемь часов «безделья». Были еще воскресенья, которые Эйнштейн целиком посвящал любимой науке. Вот что он сообщает об этом в автобиографических набросках 1955 года: «Из событий научного характера, которые относятся к тем счастливым годам в Берне, я упомяну лишь одно, которое привело к наиболее плодотворной идее в моей жизни. Специальной теории относительности было уже несколько лет, когда возник вопрос: ограничен ли принцип относительности инерциальными системами, то есть системами координат, которые движутся равномерно друг относительно друга? Врожденный инстинкт подсказывает: «Вероятно, нет!» Однако основное положение всей прежней механики — принцип инерции — как будто бы исключает всякое расширение принципа относительности».

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже