Читаем Предчувствия и свершения. Книга 2. Призраки полностью

Положим теперь в центр холста бильярдный или крокетный шар. Поверхность холста прогнется. Геометрия на ней станет неевклидовой, сумма углов треугольников перестанет быть равной двум прямым углам. На этой неевклидовой поверхности маленький шарик уже не сможет оставаться неподвижным. Он будет неизбежно и «самопроизвольно» скатываться к центру, туда, где лежит тяжелый шар. Все выглядит так, как будто тяжелый шар притягивает его. Но притяжение тут ни при чем. Можно обойтись без тяжелого шара и прогнуть холст, нажимая в его центр тонкой палочкой. Важно возникновение кривизны этого «двухмерного пространства», двухмерной кривой поверхности. Именно это искривление, эта неевклидовость приводит к тому, что свободные маленькие шарики падают к центру кривизны, следуя по геодезическим линиям этой поверхности. А роль тяжелого шара или палочки сводится к искривлению ранее плоской (евклидовой) поверхности. Усилие руки, нажимающей на палочку, полностью заменяет притяжение тяжелого шара к Земле. Правда, без гравитационного поля Земли наша модель не работает. Оно помогает моделировать силу, порождаемую кривизной пространства. Но то, что это поле играет вспомогательную роль, легко показать, подперев тяжелый шар снизу сквозь холст, чтобы холст снова стал плоским. Неевклидовы свойства исчезнут, и шарик будет спокойно лежать в любой точке или двигаться по инерции по прямым линиям, если его толкнуть, хотя поле Земли не исчезло.

Папа, почему ты так знаменит?

Теперь, дорогой читатель, немного внимания, ибо сейчас наша модель позволит нам уподобиться богу Ньютона, за которым этот гений оставил в механике только право первого толчка. Вынем опору из-под центрального шара. Холст снова приобретет кривизну, станет двухмерным неевклидовым пространством. Толкнем теперь лежащий на холсте маленький шарик. Если толчок не направлен к центру холста, то шарик начнет двигаться по сворачивающейся спирали, постепенно приближаясь к центру. Галилей, несомненно, узнал бы в этой спирали эллипс, искаженный трением, постепенно поглощающим энергию, сообщенную шарику нашим толчком. Форма и направление осей эллипса зависят от величины и направления скорости, первоначально сообщенной шарику. При особом старании можно добиться того, что спираль будет состоять как бы из постепенно уменьшающихся окружностей. Все зависит от того, каким был первый толчок.

Так мы смоделировали движение планеты вокруг Солнца. Инерция мешает планете круто повернуть и упасть на Солнце. Кривизна пространства, вызванная присутствием массы Солнца, превращает движение по инерции в движение по эллипсу. В течение миллиардов лет трение планеты о космическую пыль и газы, а также приливное трение в веществе Солнца приводят к тому, что движение происходит не точно по эллипсу, а по спирали, очень медленно и постепенно приближающей планету к Солнцу.

Ньютон понял и объяснил людям, как движутся планеты, при этом он пользовался законами механики и геометрией Евклида. Вопрос о том, почему они так движутся, он оставил потомкам. Эйнштейн понял и это. Огромная масса Солнца придает окружающему пространству свойства, описываемые неевклидовой геометрией. На малых расстояниях, в опытах на Земле это остается незамеченным. В масштабах Солнечной системы это можно обнаружить. Эллипс в трехмерном пространстве, составляющем элемент четырехмерного неевклидова «пространства — времени», является пространственным отображением геодезической линии этого «пространства — времени», по которым движутся тела, свободные от действия сил. (Силы тяготения в ньютоновском смысле как реальной дальнодействующей силы в действительности не существует. Массивное тело искажает геометрию «пространства — времени», делая ее неевклидовой. Оно образует поле тяготения, а не притягивает к себе другие тела непосредственно.)

Возможности модели, которой мы здесь воспользовались, далеко не исчерпаны. В этой книге мы прибегнем к ней еще дважды. А пока возвратимся к нашему повествованию.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже