Читаем Предчувствия и свершения. Книга 2. Призраки полностью

Спонтанное изменение симметрии электромагнитного поля приводит не только к спариванию электронов и переходу металла в сверхпроводящее состояние, но вызывает еще одно поразительное следствие: фотоны, реализующие это поле, приобретают массу. В недрах металла рождается нигде ранее не виданная материя! Этот удивительный факт подтверждается тем, что магнитное поле может проникнуть в глубь сверхпроводника только на очень малую глубину. Попытка втолкнуть его внутрь сверхпроводника увеличением напряженности магнитного поля приводит к восстановлению симметрии внутреннего электромагнитного поля металла и разрушению сверхпроводимости. Так ученые столкнулись с невообразимым фактом: спонтанное изменение симметрии поля способно сообщить массу покоя частицам, лишенным такой массы в обычных условиях!

В 1961 году Глэшоу первым попытался использовать это при построении теории элементарных частиц. В 1967 году Вайнберг создал первую теоретическую модель, в которой слабые и электромагнитные взаимодействия объединены в определенную симметричную систему, а различия между ними вызваны спонтанным нарушением этой симметрии. При этом он основывался на работе Хиггса, который еще за три года до того показал, что спонтанное нарушение симметрии может приводить к изменениям масс различных частиц, как это происходит с фотоном при возникновении сверхпроводимости. Через несколько месяцев подобную гипотезу независимо высказал Салам, теперь ее обычно называют моделью Вайнберга — Салама.

Только в 1977 году три различные группы экспериментаторов, одна в Швейцарии (в работе участвовало 55 ученых) и две в США, довели до бесспорного результата начатые в 1973 году наблюдения, доказывающие существование кванта поля слабых взаимодействий — промежуточного векторного бозона. Название получилось сложным, ибо оно должно было характеризовать свойства гипотетической частицы: «промежуточный» означает, что она имеет массу покоя, величина которой лежит между массами нуклонов и очень тяжелых частиц гиперонов. «Векторный бозон» означает, что частица родственна фотону, то есть обладает целочисленным спином и подчиняется статистике Бозе — Эйнштейна.

Огромное значение этих опытов состоит в подтверждении глубокого родства между слабыми и элекромагнитными взаимодействиями, двумя из четырех фундаментальных сил, образующих все многообразие известного нам мира. В 1979 году заслуги Глэшоу, Вайнберга и Салама, объединивших слабые и электромагнитные взаимодействия, были отмечены Нобелевской премией.

Недавно астрофизики нашли еще одно подтверждение единства электромагнитных и слабых взаимодействий. Симметрия, объединяющая поле, порождающее эти взаимодействия, позволила понять процессы, приводящие к возникновению «сверхновых» звезд. Появились надежды на то, что спонтанное нарушение симметрии, приводящее к различию слабых и электромагнитных взаимодействий, позволит вычислить, то есть указать механизм, приводящий к тому, что масса нейтрона на 0,13 % превышает массу протона.

Эти вдохновляющие успехи снова возродили веру, восходящую к Эйнштейну, веру в то, что удастся создать единую теорию всех полей, существующих в природе.

Ищите гравитоны!

Сейчас мы можем полностью присоединиться к предсказанию Эйнштейна о том, что существование элементарных частиц должно вызвать радикальную перестройку теории тяготения (общей теории относительности). Мы должны признать и то, что Эйнштейн не сумел реализовать это из-за глубокого предубеждения против вероятностной трактовки квантовой механики, казавшейся ему временным промежуточным этапом ее развития. Окончательный приговор вынесет будущее. Но сейчас другого пути нет, и к этой ситуации полностью относятся слова Эйнштейна, написанные им по другому поводу: «В свете уже достигнутых результатов счастливо найденное кажется почти само собой разумеющимся и любой толковый студент усваивает теорию без большого труда».

Теория поля тяготения, развитая Эйнштейном в форме общей теории относительности, предсказавшая отклонение света вблизи Солнца, красное смещение в звездных спектрах и запаздывание радиосигналов, проходящих около Солнца, объяснившая аномалию движения Меркурия, останется навсегда в фундаменте науки о макромире. Для применения к микромиру она нуждается в дальнейшем развитии, аналогичном тому, которое превратило классическую электродинамику Максвелла в квантовую электродинамику. Прежде всего нужно попытаться конкретизировать свойства гравитонов — частиц, реализующих действие гравитационного поля, то есть сделать то, что сам Эйнштейн произвел для электромагнитного поля, постулировав существование его квантов-фотонов и показав связь между их энергией и длиной волны или частотой света. Предсказав существование гравитонов, необходимых для того, чтобы излучение гравитационных волн не разрушило атомы, Эйнштейн не сделал попытки установить свойства этих частиц.

Перейти на страницу:

Все книги серии Предчувствия и свершения

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука