Возникает законный вопрос: где природа положила предел синтезу еще более тяжелых трансурановых элементов?
Ответ на этот вопрос еще не известен. Окончательное решение может вынести только опыт. Ясно, что подобные опыты сопряжены с величайшими трудностями. Однако теория может и должна указать экспериментаторам наиболее простые пути. Должна и может с достаточно хорошей достоверностью оценить возможности проведения таких опытов. Об этом мы еще будем говорить чуть дальше.
Прежде чем продолжить путь в трансурановые заповедники природы, следует ответить на другой вопрос: зачем это нужно? Зачем тратить силы и средства на подобные работы?
Уйти от этого вопроса невозможно. Он возникал и возникает вновь. Существует несколько ответов на него.
Первый: это нужно для удовлетворения естественного стремления человека к познанию окружающего мира. Люди будут бороться за знания, жертвуя для этого многим. На основе многовекового опыта мы знаем, что борьба за понимание явлений природы обычно порождает неожиданные открытия, имеющие не только научное, но и практическое значение. Поиск трансурановых элементов не является исключением.
Второй ответ звучит более конкретно. Плутоний является важным источником ядерной энергии. Изотоп уран-235 составляет лишь одну стосороковую часть природного урана. Непосредственное применение урана-238, составляющего остальные сто тридцать девять стосороковых (139/140), проще всего осуществить, предварительно превратив его в плутоний-239. Так и делают в специальных ядерных реакторах. Результат: в сто раз увеличиваются энергетические ресурсы урановых руд. Это, вероятно, сделает рентабельной добычу урана из рассеянных бедных руд, возможно даже из гранита.
Изотопы плутоний-238, кюрий-242 и кюрий-244 служат компактными источниками тепловой энергии, принадлежащими к совершенно новому типу. Эти изотопы испускают только альфа-частицы с большой кинетической энергией, которая переходит в тепло при их поглощении в окружающей среде. Для практического использования важно, что они не испускают опасных для человека гамма-лучей или нейтронов. Существенно, что альфа-частицы поглощаются полностью в тонких слоях вещества, поэтому альфа-радиоактивность безопасна для человека. Выделяющееся при этом тепло можно очень просто и с большим КПД превратить в электрическую энергию при помощи термоэлементов. Такие малогабаритные, легкие источники, способные работать много лет, уже применяются в регуляторах сердечного ритма (кардиостимуляторах), вживляемых в организм больного. Приборы большего размера обеспечивают работу аппаратуры искусственных спутников Земли, автономных метеорологических станций, автономных навигационных буев и т. п.
Возвратимся к первоначальному вопросу: есть ли предел расширения периодической таблицы Менделеева?
Исследование свойств атомных ядер ведет нас к все более глубокому пониманию структуры системы Менделеева и законов симметрии, скрытых в недрах материи.
Хидэки Юкава, японский физик-теоретик, который первым понял секрет строения атомного ядра, объяснил, почему положительный заряд протонов, входящих в ядро,
не разрушает его, — этому препятствуют особые ядерные силы. Эти силы, действующие между протонами и нейтронами в недрах ядра, на малых расстояниях превосходят силы электростатического отталкивания между ними. При дальнейшем уменьшении расстояния они превращаются в силы отталкивания, и это не позволяет протонам и нейтронам слиться в бесконечно малую точку. Ядерные силы одинаково воздействуют и на протоны и на нейтроны. Они таковы, что протоны и нейтроны, находясь внутри ядра, оказываются неразличимыми между собой. Все они становятся одинаковыми частицами — нуклонами, ядерными частицами. А положительный заряд, свойственный свободным протонам, находящимся вне ядра, покидает их внутри ядра и оттесняется к его поверхности.
Ядро ведет себя как капля особой ядерной жидкости, стянутой ядерными силами, подобно тому как капли обычных жидкостей стянуты силами поверхностного натяжения. Так представили модель ядра Бор и Уилер. Ее назвали капельной моделью. Это представление способно объяснить многие свойства ядер и позволяет произвести расчет их основных свойств. В том числе многих важных процессов, таких, как деление ядер. Но известен и ряд фактов, не поддающихся объяснению на основе капельной модели.
В частности, она не позволяет понять, почему по мере увеличения заряда ядра и его массы устойчивость ядер не меняется равномерно и монотонно, а испытывает странные изменения.
Это заставило ученых признать, что капельная модель ядра нуждается в уточнении. Перемежающиеся увеличения и уменьшения устойчивости ядер атомов как бы намекают на существование еще не понятой закономерности, периодичности, подобной той, которую Менделеев выявил для химических свойств атомов.
Магические числа