Читаем Предчувствия и свершения. Книга 3. Единство полностью

Вот как ставится этот опыт. Берут два одинаковых камертона, дающих одинаковый тон, скажем соответствующий частоте колебаний 500 периодов в секунду. Кроме этих камертонов, берут еще два: один — дающий звук с частотой 497 периодов в секунду и другой — с частотой в 503 периода в секунду.

Если ударить по камертону, дающему тон 500 периодов в секунду, и затем заглушить его рукой, можно услышать тихий звук, издаваемый вторым таким же камертоном. Это есть явление резонанса. Камертон приводится в заметное колебание тем звуком, который он способен испускать. Два других камертона, частоты которых различаются от частоты звука всего на три периода в секунду, не будут звучать и не обнаружат заметных колебаний. Это характеризует остроту, с которой камертоны отличают даже столь близкие между собой колебания.

Видоизменим опыт. Попробуем теперь заставить звучать тот же камертон, изменяя силу его звука в 3 раза в секунду. Для этого достаточно 3 раза в секунду помещать заслонку перед его резонансным ящиком. Слушатели отчетливо воспримут изменение силы доходящего до них звука. Однако, заглушив после этого камертон, можно убедиться в том, что теперь возбудились и начали звучать также те камертоны, которые в первом случае оставались в покое. Частоты их отличаются от частоты первого камертона на 3 периода в секунду.

Итак, опыт показывает, что, модулируя звук, то есть изменяя его силу, можно добиться возбуждения камертонов, частота которых отличается от частоты возбуждающего камертона как раз на частоту модуляции. Следовательно, в звуке, издаваемом модулированным камертоном, кроме его собственной частоты, появляются новые частоты, порожденные модуляцией.

<p>Предсказание</p>

Глубокое понимание колебательных процессов помогло Мандельштаму отыскать аналогичные явления и в такой далекой на первый взгляд от радиотехники и акустики области, как рассеяние света. Он первый понял, что в явлении рассеяния света можно обнаружить черты, родственные процессам, хорошо изученным в радиотехнике и акустике.

Этот вывод оказался очень плодотворным. В 1918 году Мандельштаму удалось использовать эту идею для дальнейшего развития теории молекулярного рассеяния света. Он рассуждал примерно так. Молекулярное рассеяние света обусловлено оптическими неоднородностями, вызываемыми местными случайными изменениями плотности, температуры и т. п. Но величина этих случайных изменений меняется во времени. Поэтому должна изменяться во времени и интенсивность (сила) рассеянного света. Это значит, что рассеянный свет испытывает модуляцию. Следовательно, если в среду попадает монохроматический свет (то есть свет, обладающий одной определенной частотой), то в рассеянном свете должны, кроме этой частоты, появиться и другие частоты, обусловленные модуляцией.

Ни один из ученых в то время не наблюдал подобного изменения частоты рассеянного света. Не имел возможности проверить выводы своей теории и сам Мандельштам — трудные условия первых лет революции, иностранной интервенции и гражданской войны препятствовали организации экспериментов, необходимых для обнаружения столь малых изменений частоты.

В 1925 году Мандельштам стал заведующим кафедрой в Московском университете. Здесь он встретился с выдающимся ученым и искусным экспериментатором Григорием Самуиловичем Ландсбергом. С тех пор обоих ученых связала не только общая работа, но и личная дружба. Они совместно продолжили штурм тайн, скрытых в слабых лучах рассеянного света.

Оптические лаборатории университета в те годы были очень бедны приборами. Молодая советская промышленность преодолевала большие трудности и поэтому не могла еще уделять достаточно внимания производству специальных оптических приборов. В университете не оказалось ни одного прибора, способного обнаружить те маленькие различия в частотах падающего и рассеянного света, которые предсказывала теория.

Однако это не остановило исследователей. Для того чтобы увеличить силу рассеянного света, они взяли в качестве источника света ртутную лампу, в которой светятся пары ртути, и решили работать не с газами, а с прозрачными твердыми телами. Ведь рассеяние тем больше, чем плотнее вещество. А в твердых телах под влиянием тепловых колебаний тоже должны возникать флуктуации плотности, сопровождающиеся рассеянием света. Но молекулярное рассеяние в твердых телах тогда никем еще не наблюдалось, и никто не знал, какое вещество следует выбрать. Начались кропотливые поиски. Наиболее подходящими оказались кристаллы кварца, среди которых можно было найти крупные, однородные и чистые образцы. Не обладая мощной аппаратурой для спектрального анализа, ученые избрали остроумный обходный путь, который должен был дать возможность воспользоваться имеющимися приборами. Для этой цели они использовали явление резонанса.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука