В начале последующей истории стоит имя французского инженера Сади Карно. Озабоченный прожорливостью паровых машин, он задумался над тем, как добиться их большей производительности. Чтобы они производили по возможности больше механической работы при затрате определенного количества топлива. И, исходя из ошибочной, но наглядной теории теплорода, нашел правильное решение. Единственно правильное решение: пар на входе машины должен быть как можно горячее, а на выходе — возможно холоднее. Эта разность температур и определяет эффективность работы паровой машины. Превзойти предел эффективности машины, определяемый максимальной разностью температур, невозможно. Можно лишь ухудшить ее работу, если допустить утечку пара или потерю тепла, не суметь уменьшить до предела трение, поглощающее часть работы, совершаемой машиной.
Перед своей ранней смертью, вызванной соединенными усилиями скарлатины и холеры, Карно успел перенести свои выводы с зыбкой почвы теплорода на основу новорожденной кинетической теории теплоты.
Кинетическую теорию теплоты, связавшую энергию с незримыми движениями молекул, создавали и совершенствовали многие выдающиеся ученые. Самым замечательным из них был англичанин Джеймс Максвелл тот, кому — после Ньютона — боги разрешили совершить два великих деяния. Вторым из них было создание электродинамики, ставшей, наравне с механикой Ньютона, одним из двух фундаментов современной науки.
В нашей истории нас интересует первое великое деяние Максвелла — создание статистической физики. Это область физики, основанная на систематическом применении математической статистики и механики Ньютона к изучению явлений природы. Она утверждает: движения индивидуальной молекулы можно изучать, сравнив ее с бильярдным шаром. Такая модель полностью подчиняется законам механики Ньютона. При помощи математической статистики можно, таким образом, вычислять свойства и поведение газов, образованных множеством молекул.
К удивлению маститых физиков, при этом, как чертики из коробочки, из невообразимого хаоса беспорядочно кишащих молекул возникали законы поведения газов, хорошо известные экспериментаторам.
Оказалось возможным при помощи математической статистики получить величины давления и вязкости газов, связать их между собой и с температурой газа. Таким путем, несмотря на хаотические движения молекул, можно с большой точностью предвидеть поведение газов, вычислить изменение давления при изменении объема и температуры, словом, произвести все расчеты, связанные с явлениями, в которых участвуют газы. Это лишь один из немногих примеров, в которых после математической обработки хаос оборачивается порядком.
Ученые пришли к мысли: не следует пытаться описывать движение каждой отдельной молекулы при помощи всемогущих законов Ньютона, а потом пытаться совместно решать миллиарды миллиардов уравнений, возникающих на этом пути.
Дело не в том, что это привело бы к ошибкам, — просто такой путь непреодолимо труден и долог. Необходимость применения методов статистики возникает не потому, что в газе царствует хаос, — увы, жизнь человеческая слишком коротка для того, чтобы выявить крытый за этим хаосом безупречный порядок, воплощенный в законах Ньютона и уравнениях механики.
Так возникло убеждение: в природе все подчиняется точным закономерностям, природе чужд истинный хаос. Это убеждение проникло в основы науки, в механику, а затем и в электродинамику. Это случилось после того, как великий голландец Хендрик Лоренц развил максвелловскую электродинамику, связав электромагнитные поля с электрическими зарядами, и создал электронную теорию строения вещества.
От порядка к хаосу
Прежде чем двигаться дальше, нам придется отойти немного назад, чтобы проследить, как работа Карно дала толчок развитию новой науки. Первоначально эта наука возникла потому, что люди, жившие в окружении множества различных сил, стремились выяснить связи, существующие между этими силами. Одни старались создать вечный двигатель, другие хотели узнать, почему все, ставшие на этот путь, терпели неудачу. Постепенно прояснились процессы, сопровождающие превращение одних сил в другие. И к середине прошлого века коллективными усилиями было выработано обобщающее понятие «энергия». Словно солнце выглянуло из-за туч! Как же раньше ученые не замечали, что все многочисленные силы — лишь различные воплощения энергии! Как не понимали, что все виды энергии могут превращаться одна в другую! Наконец наступил замечательный день — был найден закон управляющий такими превращениями. Закон сохранения энергии.