Ниже мы более подробно проследим дальнейшую эволюцию звезд. Теперь же отметим, что только привлечение спектрального анализа позволило изучать процессы, происходящие в глубинах космоса, узнать, на какой стадии развития звезд возникает возможность образования планетных систем. Спектральный анализ заставил астрофизиков отбросить первоначальный вариант теории происхождения звезд, исходивший из того, что весь запас энергии протозвездной туманности заключается в ее гравитационной энергии. Потребовал пересмотра и второй вариант, к которому была дополнительно привлечена энергия, освобождающаяся за счет радиоактивного распада. И этой энергии оказалось недостаточно для того, чтобы обеспечить свечение звезд в течение миллиардов лет.
Звезды и атомы
Современные представления об эволюции звезд смог» возникнуть только после создания квантовой физики. Ученые задолго до овладения ядерной энергией теоретически изучили ядерные реакции, в ходе которых протон и нейтроны объединяются в ядра гелия и других легки элементов. Такие реакции приводят к выделению столь большого количества энергии, что оно вполне покрывает энергетические потери звезд во время главных этапов их эволюции. Цикл ядерных реакций, способный удовлетворить всем данным наблюдательной астрономии, пережил целый ряд увлекательных метаморфоз.
Может показаться удивительным, что вывод о том что энергия, уносимая излучением Солнца и звезд, выделяется в ходе ядерных реакций синтеза, был получен до того, как ученые поняли, каким образом можно искусственно создать условия, необходимые для протекания таких реакций.
Причиной такой непоследовательности оказалось бурное развитие ядерной физики, обеспеченное как исследованиями космических лучей, так и созданием ускорителей заряженных частиц. Обилие экспериментальных результатов, полученных из этих двух источников, вызвало поток теоретических исследований, в свою очередь стимулировавших экспериментаторов. Именно такая непосредственная связь теории и эксперимента обеспечила прорыв в микромир, а это в свою очередь открыло новые перспективы в астрофизике.
Однако все эти успехи не продвинули ученых к пониманию таинственных процессов рождения звезд и планет. Возможность продвижения в эту область обеспечили не столько результаты астрономических наблюдений, сколько прогресс в развитии электронных вычислительных машин. Только ЭВМ помогли разобраться в том, как туманности превращаются в звезды, в недрах которых начинаются ядерные реакции. При помощи ЭВМ удалось понять, как исчезают парадоксы, заставившие ученых отказаться от Ю — Лапласа.
Основной экспериментальный материал, заложенный в математические модели, которые переработали ЭВМ, собран радиоастрономами. Радиоволны и отчасти инфракрасные волны позволили получить сведения о внутреннем состоянии и процессах в туманностях, в которые невозможно проникнуть при помощи оптических телескопов. При этом радиоволны приносят сведения о начальных этапах, когда туманность очень разрежена и почти однородна. Инфракрасные лучи позволяют обнаружить начальные этапы возникновения звезд в глубинах этих туманностей. Плотность вещества в туманности и в молодой протозвезде различается в 1020 раз (в сто миллиардов миллиардов раз). Все, что мы знаем о процессах, протекающих при рождении протозвезд из туманностей, сообщили нам ЭВМ, «перемоловшие» огромную информацию. Впервые этот путь исследования выбрал Р. Ларсен из Йельского университета.
Процесс начинается так, как описывал Ньютон в письме к Р. Бентли: ограниченная масса вещества стягивается силами тяготения в плотный сгусток. Теперь мы называем такой процесс гравитационным коллапсом и знаем, как развивается этот процесс. На первом этапе под влиянием тяготения облако сжимается и постепенно становится более плотным, а его температура повышается за счет энергии гравитации.
Инфракрасное излучение еще выходит из глубин облака, унося энергию и приводя к тому, что температура повышается только до 10 К*, когда выделение гравитационной энергии уравновешивается ее потерями в результате излучения.
Давление излучения, предсказанное Максвеллом открытое П. Н. Лебедевым, еще мало и не препятствует гравитационному коллапсу. По мере развития этого процесса плотность вещества увеличивается без увеличен его температуры до тех пор, пока излучение уносит наружу всю энергию, выделяющуюся в ходе коллапса. Но когда плотность облака возрастает настолько, что оно становится непрозрачным для инфракрасных лучей, энергии прекращается, давление и температура облака возрастают, и коллапс прерывается совместным действием давления излучения и вещества. В это плотность внутренней части облака достигает 10
Начинается сравнительно спокойный этап, при котором внутреннее давление в ядре удерживает его от дальнейшего сжатия.