Правда, в некоторых случаях берется немного более высокая концентрация. Американский ученый Т. Мейман обнаружил, что, доведя концентрацию хрома до десятых долей процента, при которой обычные квантовые усилители уже не работают, можно создать усилитель, действующий при температуре жидкого азота, то есть при 77 градусах выше абсолютного нуля. Эффект усиления был им получен даже при температуре сухого льда (твердой углекислоты), а это 195 градусов выше абсолютного нуля. К сожалению, эти весьма интересные опыты не нашли еще практического применения. Хотя работать с жидким азотом, а тем более с сухим льдом много удобнее и дешевле, чем с жидким гелием, усилители, способные действовать при этих температурах, недостаточно хороши и пока не могут конкурировать с другими типами малошумящих усилителей.
Новым приборам было нелегко пробивать себе дорогу в жизнь. Они встречали жестокую конкуренцию со стороны других усилителей и должны были доказать свое преимущество. А преимущество было действительно бесценное.
О внутренних шумах радиоприемников знает каждый внимательный радиослушатель, каждый наблюдательный телезритель. Даже в тихой лесной избушке, удаленной от городов с их заводами, троллейбусами, неоновыми рекламами и рентгеновскими трубками, создающими помехи радиоприему, даже при питании от батарей, даже зимой, когда от ближайших гроз нас отделяют тысячи километров, мы слышим слабый шум и видим на экране телевизоров легкую рябь. Особенно мешает это при приеме дальних радиостанций. Эти шумы и помехи возникают внутри радиоприемников, главным образом в электронных лампах.
В борьбе за чувствительность радиоприемников ученые достигли очень больших результатов. Они близко подошли к пределу — идеальному приемнику, не вносящему в передачу своих собственных шумов. Правда, идеал есть идеал, он, как горизонт, удаляется по мере того, как к нему приближаются. Идеального приемника нет и никогда не будет. Но приблизиться к идеалу не только мечта, но и практическая задача ученых и инженеров.
Лучшие электронные лампы и специальные полупроводниковые параметрические усилители, работающие в диапазоне сантиметровых волн, имеют очень малые шумы. Ученые оценивают их сотнями градусов. Не удивляйтесь, для расчетов оказывается более удобным оценивать шумы в градусах, а не в электрических или акустических единицах. В тех же градусах, которыми мы измеряем температуру. Так, идеальный приемник не шумел бы вовсе и его условная шумовая температура была бы равна нулю градусов. Отдельные образцы современных приемников имеют шумовую температуру вблизи ста градусов. Но и это слишком много для радиоастрономов, которым необходимо принимать очень слабые сигналы. Они бы просто утонули в собственных шумах приемной аппаратуры. Квантовые парамагнитные усилители смогли скачком улучшить чувствительность приемников. Они имеют шумовую температуру, измеряемую лишь десятками градусов, причем большая часть шумов возникает даже не в самом усилителе, а в антенне и волноводах, соединяющих антенну с усилителем. Почти что идеал! Не дотягивают буквально на десятку.
Только такое большое увеличение чувствительности смогло обеспечить квантовым парамагнитным усилителям путевку в жизнь, несмотря на то, что их применение много сложнее, чем работа с электронными лампами или полупроводниковыми усилителями.
Особенно усложняет дело необходимость применения жидкого гелия. Гелий ведь сравнительно редкий газ. Он образуется при радиоактивном распаде природных радиоактивных элементов, и так как гелий легче воздуха, то, попав в атмосферу, он быстро поднимается вверх и в приземном слое воздуха его так мало, что добывать гелий из воздуха все равно, что переливать из пустого в порожнее.
Сейчас основным источником гелия служат природные горючие газы, в которых содержится сравнительно большой процент гелия. Имеется гелий и в источниках радиоактивных вод, в нефти и некоторых минералах. Так что промышленная добыча гелия сейчас с избытком покрывает потребность. Но получить газообразный гелий еще далеко не все. Гелий имеет упрямый характер — он наиболее трудно конденсируемый из всех известных веществ. Долго считалось, что он ни при каких условиях не превращается в жидкость. Он покорился лишь в начале нашего века. Для его сжижения необходимы специальные машины. Хранить жидкий гелий можно только в сосудах, напоминающих большие термосы.
Но ученые вынуждены идти на преодоление всех этих трудностей, лишь бы получить сверхчувствительные малошумящие приемники сверхвысоких частот! Сейчас на повестке дня стоит внедрение специальных гелиевых холодильников. Эти холодильники основаны на тех же принципах, которые используются в большинстве бытовых и промышленных холодильников, только вместе применяемого в них фреона — синтезируемого химиками легко сжижающегося газа — в этих холодильниках циркулирует гелий. Небольшой компрессор сжимает гелий так же, как это происходит в обычных холодильниках. Расширяясь в специальных устройствах, сжатый газ сильно охлаждается и, охладившись, превращается в жидкость.