Читаем Превращения гиперболоида инженера Гарина полностью

Инженеры-светотехники встречаются с гораздо более существенными трудностями. Они не могут увеличить яркость прожектора просто потому, что яркость современных ламп достигла предела. Большего не допускают существующие материалы. Наращивать световой поток дальше можно, только увеличивая размеры лампы. Вот здесь и обнаруживается тупик. Прожектор может превратить в параллельный пучок только свет, идущий из точки. Свет, выходящий из соседней точки, формируется в отдельный (тоже параллельный) пучок, но идущий в другом направлении. Яркость света, излучаемого в первоначальном пучке, при этом не возрастает. Мы можем увеличить размеры площади, освещенной прожектором, но не ее яркость.

Яркость луча любого прожектора быстро уменьшается с увеличением расстояния. Ведь каждый прожектор излучает расходящийся пучок лучей из-за того, что источник света в нем не точечный. Оптический квантовый генератор с самого начала испускает почти не расходящийся пучок света, причем лучи его тем более параллельны, чем больше сечение пучка. Конечно, этот пучок постепенно расширяется из-за дифракции, то есть из-за огибания светом края выходного отверстия. Но это сравнительно небольшая часть, и ученые знают, как ее уменьшить. Поэтому яркость луча оптического квантового генератора очень медленно уменьшается даже на больших расстояниях.

Вот один из примеров невозможного. Никакая оптическая система не может сделать изображение обычного источника света более ярким, чем сам источник. Солнечный зайчик, отброшенный большим вогнутым зеркалом, режет сталь и плавит гранит. Как ни велика температура этого зайчика, она ниже температуры поверхности Солнца.

Если же на зеркало или линзу падает практически параллельный пучок лучей оптического квантового генератора, то вся энергия, заключенная в этом пучке, соберется в фокусе, на площадке размером порядка длины световой волны. Яркость этой площадки будет огромна. Температура в ней быстро поднимется. Легко предвидеть, что при этом произойдет!

Еще пять лет назад об этом и не мечтали. Сфокусированный луч оптического квантового генератора пробивает дырки в стальных пластинках, испаряет алмаз, а если в фокусе нет ничего, кроме воздуха, превращает его в миниатюрную шаровую молнию. Может быть, самое поразительное здесь то, что источник, испускающий этот шквал энергии, сам совсем холодный. Иногда он имеет температуру жидкого азота.

Лазерная оптика обогнала обычную с помощью радио. Обратная связь сыграла решающую роль. Только в результате дружного действия биллионов атомов их совокупное излучение приобретает почти идеальную регулярность в пространстве и времени.

Существенной особенностью лазеров является то, что все они основаны на использовании многообразных вариантов одного давно известного оптикам явления. На использовании разновидностей особого рода свечения — люминесценции. Если вы любите короткие формулировки, то можно сказать, что лазеры родились из союза люминесценции и обратной связи.

С люминесценцией навсегда связано имя академика Сергея Ивановича Вавилова.

В начале тридцатых годов в особняке на Миусах несколько человек каждый день спускались в абсолютно темный подвал и часами сидели там без всякого дела. Подобно тому, как Шерлок Холмс, желая сосредоточиться, играл на скрипке, некоторые из них пели. Это были академик С. И. Вавилов и его ученики. Они увлеченно трудились над разгадкой самосвечения веществ. Оно зачастую было столь слабым, что приходилось задолго до опыта готовить себя к нему, сидя в темноте и ничего не делая. Так часами сидел П. А. Черенков, нобелевский лауреат, которому посчастливилось открыть известный эффект Черенкова. Так работал и профессор Н. А. Добротин, ставший нобелевским лауреатом и заместителем директора ФИАНа. Так сидел часами и сам Вавилов, и сотрудники этим охотно пользовались, чтобы в тишине обсудить текущие дела и проблемы. Многие из его учеников стали видными учеными и работают не только в Москве, но и в других городах. Один из них, П. П. Феофилов, ленинградец, стал крупнейшим специалистом в области люминесценции. Он вслед за своим учителем исследовал природу свечения, лежащего в основе тех процессов, которые заставляют сиять в темноте циферблаты часов и приборов, гнилушки и светлячки в лесу и брызги морской воды в августовские ночи, а в наших домах образуют изображение на экранах телевизоров.

Феофилов, теперь уже вместе со своими учениками и сотрудниками, особенно подробно исследовал законы люминесценции ионов редких земель в различных кристаллах и стеклах.

Перейти на страницу:

Все книги серии Эврика

Похожие книги

23 июня. «День М»
23 июня. «День М»

Новая работа популярного историка, прославившегося СЃРІРѕРёРјРё предыдущими сенсационными книгами В«12 июня, или Когда начались Великая отечественная РІРѕР№на?В» и «На мирно спящих аэродромах.В».Продолжение исторических бестселлеров, разошедшихся рекордным тиражом, сравнимым с тиражами книг Виктора Суворова.Масштабное и увлекательное исследование трагических событий лета 1941 года.Привлекая огромное количество подлинных документов того времени, всесторонне проанализировав историю военно-технической подготовки Советского Союза к Большой Р'РѕР№не и предвоенного стратегического планирования, автор РїСЂРёС…РѕРґРёС' к ошеломляющему выводу — в июне 1941 года Гитлер, сам того не ожидая, опередил удар Сталина ровно на один день.«Позвольте выразить Марку Солонину свою признательность, снять шляпу и поклониться до земли этому человеку…Когда я читал его книгу, я понимал чувства Сальери. У меня текли слёзы — я думал: отчего же я РІРѕС' до этого не дошел?.. Мне кажется, что Марк Солонин совершил научный подвиг и то, что он делает, — это золотой РєРёСЂРїРёС‡ в фундамент той истории РІРѕР№РЅС‹, которая когда-нибудь будет написана…»(Р

Марк Семёнович Солонин

История / Образование и наука