Первое, что бросалось в глаза входящему, была огромная, многотонная могильная плита, подвешенная к потолку. Джаван заказал ее, чтобы использовать в качестве рабочего стола. До чего же остроумно он поступил! Я вспоминаю, как после окончания института одной из первых моих работ было создание специального камертонного генератора. Обыкновенный камертон, с помощью которого музыканты настраивают свои инструменты, служил колебательным контуром, определяющим частоту моего лампового генератора. Я закрепила ножку камертона на своем лабораторном столе, присоединила его к схеме — и генератор ожил. Все шло хорошо, камертон монотонно звучал, но время от времени он начинал заикаться. Оказывается, ему передавалось сотрясение почвы от проходящих где-то далеко грузовиков! И еще: автоматический самописец, который я оставляла работать и ночью, говорил, что камертон капризничал рано утром. Я долго ломала голову — почему именно по утрам? Товарищи в шутку строили предположения о влиянии Венеры, утренней звезды, пятен на Солнце, на которые валят все непонятное.
Все оказалось гораздо прозаичнее — тетя Нюша, наша уборщица, сметала с камертона пыль!
Тогда я написала устрашающий плакат: «Не трогать! Смертельно!» А тетя Нюша продолжала вносить свой вклад в научное исследование. Не оставалось ничего другого, как застать ее врасплох.
— Тетя Нюша, что же вы со мной делаете?! Плакат читали?
— Ох, милая, я же неграмотная. Плакат видела. Только думала, что ты за звание борешься.
Итак, я тоже работала в подвале, но не додумалась обзавестись могильной плитой! Правда, мой начальник, наверно, упал бы в обморок от такого расхода, зато ни машины, ни тетя Нюша генератора бы не достигли.
Но вернемся к Джавану. В тепличной обстановке его лаборатории лазеры могли показать, на что они способны. И показали! При сравнении световых волн, испускаемых двумя одинаковыми лазерами, оказалось, что их частоты не изменяются больше чем на несколько колебаний в секунду.
Работы Джавана получили дальнейшее развитие.
Уже действуют многочисленные газовые лазеры на смесях других газов.
Впрочем, и лазер на смеси гелия и неона может работать в других режимах, генерируя не только невидимые инфракрасные волны длиной в 1,15 микрона, но и инфракрасные волны других длин и видимый красный свет с длиной волны около 0,63 микрона.
Впоследствии оказалось возможным добиться генерации и в чистых газах, и не только под действием электрического разряда. Инверсия населенностей в некоторых газах может быть достигнута и при их освещении, то есть путем оптической накачки, как это предлагали Таунс и Шавлов.
При оптической накачке атомы газа независимо один от другого поглощают фотоны, хаотически вылетающие из яркой лампы. Но в процессе квантовой генерации все атомы испускают фотоны строго согласованно. Здесь происходит замечательный процесс преобразования хаоса в образцовый порядок. Процесс, еще теперь кажущийся чуть ли не противоестественным.
Газы постепенно открывали перед учеными новые и новые возможности. Выяснилось, что для квантового генератора пригодны не только газы, состоящие из нейтральных атомов, но и плазма — газ, состоящий преимущественно из ионов и свободных электронов. Ионные или, как их иногда называют, плазменные лазеры позволили продвинуться еще дальше в область ультрафиолетовых волн, значительно увеличить число спектральных линий, используемых в квантовых генераторах.
Вслед за ионами наступила очередь молекул. Обычный углекислый газ оказался превосходным активным веществом, при помощи которого удалось получить в непрерывном режиме мощность почти в 200 ватт на волне около 10,5 микрона.
Двести ватт — это мощность большого электрического паяльника. Представьте себе эту мощность сосредоточенной на острие иголки. Трудно предвидеть все технологические возможности, открываемые применением такого луча. Учтите еще, что волна в 10 микрон попадает как раз в «окно прозрачности» земной атмосферы. Этот невидимый инфракрасный свет наиболее слабо поглощается газами, составляющими воздух, сравнительно мало поглощается парами воды и не очень рассеивается каплями дождя. Чего же еще могут желать люди, работающие над системами оптической связи и другими применениями лазеров, связанными с прохождением их лучей через атмосферу!
Но и это не исчерпало возможностей, открываемых газами. Они помогли применить в квантовой электронике давно известное влияние света на химические реакции. Каждый знает о вредных проявлениях фотохимических реакций. Они вызывают выгорание многих красок, порчу резины, старение пластмасс. Есть, конечно, и полезные реакции такого типа. Без них невозможна жизнедеятельность большинства растений. Ведь только солнечные лучи приводят в действие химическую фабрику, скрытую в зеленых листьях.