Резерфорд-техник одолел сложные математические расчеты и обнаружил: если картина, которую он себе представляет, действительно верна, в экспериментах должно было получаться именно то, что наблюдала его команда. Большинство быстрых и тяжелых альфа-частиц пролетит сквозь золотую фольгу, мимо крохотных атомных центров, и в результате траектория их полета изменится лишь слегка. Меж тем некоторые, пролетающие вблизи ядер, столкнутся с сильным полем и претерпят значительное отклонение от прямого маршрута. Мощь этого силового поля – прямо-таки из научной фантастики, как для нас – силовые поля из фильмов. Но пусть мы не имеем возможности генерировать поля такой силы в макромире, они существуют внутри атома.
Важный нюанс открытия Резерфорда: положительный заряд ядра сосредоточен в его центре, а не распределен равномерно по объему. Его представление, будто электроны вращаются вокруг ядра подобно планетам вокруг Солнца, напротив, было совершенно ошибочным – и он это понимал.
Во-первых, аналогия с Солнечной системой не учитывает взаимодействия между планетами этой системы, – как не учитывает она и взаимодействия между разными электронами внутри атома. Эти взаимодействия совсем не одинаковы. Планеты, у которых солидная масса, но никакого общего электрического заряда, взаимодействуют гравитационно; электроны, у которых есть заряд, а масса мала, взаимодействуют электромагнитно. Сила тяготения чрезвычайно слаба, и потому притяжение планет друг к другу настолько мало, что для многих практических целей им можно пренебречь; электроны же воздействуют друг на друга мощнейшим электромагнитным отталкиванием, которое быстро нарушило бы аккуратненькие круговые орбиты.
Во-вторых – и это вопиющая нестыковка, – и планеты, и электроны, двигайся они по кругу, испускали бы волны энергии: планеты – гравитационной, электроны – электромагнитной. Опять-таки, сила тяготения очень слаба, и за миллиарды лет существования нашей Солнечной системы планеты потеряли ну, может, несколько процентов своей энергии. (На самом деле об этом эффекте и не догадывались, пока в 1916 году его не предсказала теория тяготения Эйнштейна.) Электронное же взаимодействие настолько сильно, что, согласно теории Максвелла, движущиеся по орбите электроны Резерфорда испустят всю свою энергию и плюхнутся на ядро примерно за одну стомиллионную секунды. Иными словами, если бы модель Резерфорда была верна, Вселенной в известном нам виде не существовало бы.
Вот она, расчетная оценка, какая запросто может потопить любую теорию: объявление о том, что Вселенной не существует. Так отчего же тогда относиться к такой теории серьезно?
Здесь возникает еще одна важная особенность развития науки: большинство теорий – не потрясающие новости планетарного масштаба, а, скорее, частные модели, нацеленные на описание конкретной ситуации. И потому, даже если в них есть недочеты, и сам автор модели знает, что не во всех случаях она работает, польза от нее все равно может быть.
В случае с атомом Резерфорда физики, занятые изучением атома, оценили, что эта модель дает точные прогнозы устройства ядра, и постановили, что дальнейшие эксперименты проявят, каких ключевых фактов не достает, чтобы разобраться, как во всё это встроены электроны и почему атом стабилен. Неочевидно было другое: атому требовалось не просто объяснение похитрее – нужно было революционное объяснение. Бледный и скромный Нильс Бор, однако, смотрел на все иначе. Юному Бору атом Резерфорда и его противоречия виделись стогом сена, в котором притаилась золотая иголка. И он был исполнен решимости ее найти.
Бор задался вопросом: если атом не испускает волн энергии, как того требует классическая теория (по крайней мере, согласно модели Резерфорда), может ли так быть, что атом не подчиняется классическим законам? Следуя этому рассуждению, Бор обратился к работе Эйнштейна о фотоэлектрическом эффекте. Он задумался, что может получиться, если включить атом в представление о кванте. То есть а что если атом, как световые кванты Эйнштейна, может иметь энергию лишь определенного значения? Эта мысль привела его к пересмотру модели Резерфорда и созданию того, что впоследствии станет называться Боровской моделью атома.
Бор применил этот подход к простейшему атому – атому водорода, состоящему из одного электрона, обращающегося вокруг ядра, которое представляет собой одинокий протон. Трудность этого предприятия1
можно проиллюстрировать фактом, что в те поры такое простое устройство атома водорода не было очевидным: из серии экспериментов, проведенных Томсоном, Бору пришлось сделать вывод, что у водорода всего один электрон.