Читаем Прямоходящие мыслители. Путь человека от обитания на деревьях до постижения мироустройства полностью

Продолжая традицию Орема, Ньютон представлял себе изменение как наклонную линию. Допустим, если отражать на графике расстояние, пройденное телом, на вертикальной оси, а время – на горизонтальной, тогда наклонная линия на графике – отображение скорости тела. Горизонтальная линия, таким образом, представляет неизменное положение тела, а наклонная или кривая показывает, что положение тела резко меняется – тело движется с большой скоростью.

Графики (а), (б) и (в) изображают равномерное движение с (а) нулевой скоростью (тело покоится), (б) малой скоростью,(в) большой скоростью. График (г) отражает движение с ускорением

Но Орем и другие толковали графики в более качественном смысле, нежели мы в наши дни. Про график «расстояние-время», например, не понимали, что он в каждой точке представляет расстояние, пройденное за время, равное координате на горизонтальной оси. Не понимали и того, что наклон линии на графике представляет скорость тела в каждый момент времени. До Ньютона скорость для физиков была средней, то есть все пройденное расстояние, деленное на продолжительность времени в пути. То были довольно грубые расчеты, поскольку время в них обычно исчислялось часами, днями или даже неделями. Вообще-то засекать короткие промежутки времени с хоть какой-то точностью было и невозможно – вплоть до 1670 года, когда английский часовщик Уильям Клемент изобрел маятниковые «ходики», благодаря которым время стало можно измерять с точностью до секунды.

Пойти дальше средних величин к значениям графиков и их уклонов в каждой отдельной точке – вот откровение Ньютонова анализа. Он взялся разбираться с тем, с чем никто до него не возился: как определить мгновенную скорость тела, ее скорость в каждый миг? Как разделить расстояние, пройденное телом, на затраченное время, если речь идет о временном промежутке размером с точку? Мыслимо ли это вообще? Эту задачу Ньютон и взялся решать в «Черновой книге».

Галилей воображал себе «предельные случаи» – например, плоскость, чей угол наклона все увеличивают и увеличивают, пока он не достигнет прямого, Ньютон же довел этот подход до предела возможности. Чтобы определить мгновенную скорость в данный момент времени, он представил, как будет рассчитывать среднюю скорость традиционно, то есть за некоторый промежуток времени, включая и то мгновение, которое его интересует. Затем он представил себе нечто новое и абстрактное: сужение этого промежутка, еще и еще, пока, в предельном случае, его протяженность не приблизится к нулю.

Иными словами, Ньютон представил, что временной промежуток можно взять столь малым, что он будет меньше любого конечного числа – но все-таки больше нуля. Ныне длина такого промежутка называется «стремящейся к нулю» или «бесконечно малой». Если рассчитать среднюю скорость в определенный промежуток времени, а затем уменьшить этот промежуток до бесконечно малого, получится скорость тела в определенный миг, или мгновенная скорость.

Математические правила нахождения мгновенной скорости в данный момент времени – или, в общем случае, наклона линии в данной точке – и есть основа математического анализа[199]. Если атомы – неделимые составляющие химических веществ, то бесконечно малые величины – своего рода неделимые составляющие пространства и времени.

Вместе с математическим анализом Ньютон изобрел математику изменения. В особенности применительно к движению изощренное понимание мгновенной скорости он предложил культуре, где лишь недавно придумали способ измерять скорость: бросать прикрепленную к лагу веревку, на которой завязаны узлы, за корму и считать, сколько узлов ушло за борт за единицу времени. Впервые появился смысл в понятии скорости тела – или же в изменении чего угодно – в заданный момент времени.

Ныне математический анализ применяется для описания каких угодно изменений – обтекание крыльев самолета воздухом, рост населения, перемены в климатических системах, подъемы и падения биржевых показателей, ход химических реакций. В любом деле, где можно графически отразить количество, в любой области науки, математический анализ – ключевой инструмент[200].

Математический анализ позволил Ньютону соотнести приложенную к телу силу в любой момент времени с изменением скорости в этот же момент. Более того, постепенно прояснилось, как сложить все бесконечно малые изменения скорости и вывести из этого траекторию тела как функцию от времени. Но этим законам и методам пришлось подождать открытия еще несколько десятилетий.

И в физике, и в математике «Черновая книга» Ньютона превзошла все доселе вообразимое. До Ньютона, к примеру, столкновение тел воспринималось как состязание между внутренними устройствами этих тел, словно двое мускулистых гладиаторов пытаются вышвырнуть друг друга с арены. В видении Ньютона же каждое тело осмысляется лишь в понятиях воздействующего на них внешнего побудителя, сиречь силы.

Перейти на страницу:

Похожие книги

Физика в быту
Физика в быту

У многих физика ассоциируется с малопонятным школьным предметом, который не имеет отношения к жизни. Но, прочитав эту книгу, вы поймете, как знание физических законов помогает находить ответы на самые разнообразные вопросы, например: что опаснее для здоровья – курение, городские шумы или электромагнитное загрязнение? Почему длительные поездки на самолетах и поездах утомляют? Как связаны музыка и гениальность? Почему работа за компьютером может портить зрение и как этого избежать? Что представляет опасность для космонавтов при межпланетных путешествиях? Как можно увидеть звук? Почему малые дозы радиации полезны, а большие губительны? Как связаны мобильный телефон и плохая память? Почему правильно подобранное освещение – залог хорошей работы и спокойного сна? Когда и почему появились радиоактивные дожди?

Алла Борисовна Казанцева , Вера Александровна Максимова

Научная литература / Детская познавательная и развивающая литература / Научно-популярная литература / Книги Для Детей / Образование и наука