Это количественный аспект возникал в истории постижения биологического времени и на этих страницах неоднократно. Уже в ранних работах по размножению живого вещества Вернадский указывал, что деление микроорганизмов являет собой процесс “астрономической точности”. Он предлагал называть время удвоения организмов “биологическим элементом времени”. Обобщив тогдашние немногочисленные и случайные исследования, он вывел, что он равнялся от 21 мин до 35 мин у простейших. (Вернадский, 1994А, с. 201). Что касается бактерий, то этот элемент Вернадский полагал длящимся около 17 минут (Вернадский, 1994А, с. 603). Эти цифры имеют значение в биогеохимии, но мало пригодны для теории времени. Для того, чтобы найти некоторую единицу времени-пространства, надо представить себе процессы внутри “черного ящика”.
Рассмотрим уровень молекулярный. Возможно, обобщенный образ элементарной клеточки времени-пространства должен возникать из представлений Э. Бауэра о напряженной, деформированной молекуле живой материи? О количественных показателях по времени “распрямления” деформированного электрически напряженного состояния Бауэр думал, когда пытался рассчитать собственную энергетику живой материи. Правда, для него это не была именно собственно единица времени, он просто искал константный показатель продолжительности, какую-то элементарную единицу
Бауэр стихийно мыслил в пространственно - временных категориях, когда создавал свое понятие неравновесности. С пространственной точки зрения живые молекулы геометрически деформированы, а как обстоит дело с временной, второй стороне медали? Бауэр нашел, точнее сказать, искал и ее. Если молекула непрерывно разряжается, то должен быть какой-то минимальный срок, в течение которого она остается равной сама себе, сохраняет, удерживает эту неравновесность? Оказалось, что в свободном состоянии продолжительность жизни возбужденной молекулы 10 –8 --
10 –7 сек. “Если же молекулы ассоциированы или тем более включены в решетку кристалла, так что уже нельзя говорить об отдельных молекулах, то выравнивание возбужденного деформированного состояния будет длиться значительно дольше”. (Бауэр, 1935, с. 191-192). Иначе говоря, существует определенный ритм в работе. И он оказался прав.Уже после его трагической смерти (он был арестован и исчез в ГУЛАГе), совсем в другой месте и с другими целями, но стандартная продолжительность жизни возбужденной молекулы живой клетки была найдена. Оказалось, что удобнее всего изучать длительность возбуждения на молекулах хлорофилла, которые облучаются светом. Эти опыты проводил академик А.Н. Теренин в нашей стране и Дж. Н. Льюис в США. Они опубликовали результаты, первый в 1943 году, второй в 1944-м, согласно которым генеральный процесс усвоения энергии света происходит в одном из двух возможных состояний возбужденного фотоном света электрона из молекулы хлорофилла, а именно в долгоживущем, длящемся 10 –3 сек, и в кратком состоянии, когда возбуждение длилось 10 –8 сек. В первом случае энергия успевала прореагировать в молекуле хлорофилла и давала старт цепочке стремительно развивавшихся биохимических реакций, которые приводили к образованию первичных продуктов фотосинтеза. Во втором случае реакции усвоения фотона не происходило и он излучался обратно в среду. (Красновский, 1974, с. 7). Таким образом, происходит выбор одного из двух состояний и выбор не случайный, а обусловленный биохимической природой молекулы. Выбор, с которого все начинается в живом организме.
Эти данные получены в опытах на растворах хлорофилла, а через несколько лет выяснилось, что в природных средах время возбуждения дольше в 3 - 8 раз. Но порядок цифр сохранялся, то есть разрыв или разница между двумя состояниями способного к реакции электрона в молекуле хлорофилла составляла по времени шесть или пять порядков. (Дмитриевский и др., 1957).