Льюис Кэрролл
ПРИДИРКИ ОКСФОРДСКОГО ПРОХОЖЕГО
Численное значение пая (1865)
Динамика партийной горячки (1865)
Факты, фантазии и причуды (1866—1868)
Новая Звонница (1872)
Видение трёх «Т» (1873)
Чистый чек (1874)
НОВЫЙ МЕТОД ПОЛУЧЕНИЯ ЧИСЛЕННЫХ ЗНАЧЕНИЙ в применении к числу
Проблема нахождения величины числа π, привлекавшая внимание математиков с самых давних времён, ближе к нашему времени стала рассматриваться как чисто арифметическая. Но именно нынешнему поколению предназначено было совершить открытие, что в действительности это всё-таки проблема из области динамики, и истинная величина пая, казавшаяся нашим предшественникам неким
[3], была в конце концов под давлением.Ниже приведены основные обозначения.
Пусть U — это Университет, G — Греческий Язык, а P — Профессор. Тогда GP — Профессор Греческого Языка; приведём к несократимому виду, соответствующие младшие члены получат обозначение J [4]
.Пусть также W — усилия, связанные с хождением в должность, Т —
времена, ρ — жалуемая за те усилия плата, π — плата за то же в соответствие с, а S — вожделенная сумма, так что π = S.Задача заключается в получении такой величины π, которая была бы соизмерима с W.
В прежних трудах, посвящённых этому предмету, было показано, что среднее значение пая составляет 40,000000. Позднейшие авторы заподозрили, что запятая случайно оказалась смещённой, и что истинное значение пая на самом деле [5]
400,00000; но так как подробности процедуры вычисления утрачены, то вплоть до нашего времени дело на том и остановилось, хотя для решения этой задачи пытались применить некоторые чрезвычайно остроумные методы.Ниже мы собираемся дать краткий обзор этих методов. На наш взгляд, более остальных заслуживают внимания Рационализация, метод Индифферентности, метод
и метод Исключения. Завершим мы рассказом о величайшем открытии наших дней, методе Вычисления под Давлением.Своеобразие процедуры освобождения от иррациональностей заключается в её одинаковом воздействии на все величины с отрицательным знаком.
Покажем это на примере. Пусть Н — Высокая церковь, а L — Низкая церковь; тогда их среднее геометрическое будет
. Обозначим его «В» (Широкая церковь) [6].=> HL = B2
[7]Пусть, кроме того, и
являются неизвестными.Теперь процедура требует разбиения U на элементарные фракции [8]
, которые могут создавать различные объединения. Та из двух сформированных таким образом фракций большинства, которая соответствовала , в дальнейшем не представляла трудностей, зато рационализация второй казалась безнадёжной.Вследствие этого попытались провести
[9], и уже раздавались вопросы: «Почему же величину π никак не оценят?». Главная трудность заключалась в нахожденииТогда с целью упростить уравнение прибегли к некоторым оригинальным заменам и перестановкам, и одно время утверждали, хотя это никогда не было доказано, что все участвующие игреки оказываются на одной стороне. Тем не менее, предварительные слушания вновь и вновь приводили к одному и тому же иррациональному результату, поэтому данная
в конце концов была оставлена [10].Это была модификация «метода конечных Разностей», которую вкратце можно описать так.
Пусть
— Очерки, а R — Рецензии, тогда геометрическая область точек (Е + R) в системе координат оказывается поверхностью (т. е. эта область имеет длину и ширину, но не имеет глубины) [11]. Пусть — это новизна; предположим, что (Е + R) является функцией .Принимая эту поверхность в качестве базисной плоскости, получаем:
Е = R = B
=> EB = B2
= HL (См. предыдущий пункт).Умножив на
, получаем EBP = HPL [12].Теперь оставалось исследовать геометрическое место
[13]; было показано, что оно является родом Цепной Линии [14], называемым Цепной Патристикой [15], которая обычно определяется как « паттерн, содержащий много кратных точек». Геометрическое место HPL практически полностью с ней совпало.Основные результаты ожидались из допущения, что (E + R) есть функция от , но так как оппоненты этой теоремы решительно преуспели в доказательстве того, что переменная
даже не входит в данную функцию, то на получение реального значение π этим методом не осталось никакой надежды.