Множество факторов, которое необходимо учитывать в моделях, находится на стыке ряда исследовательских программ [18–23], реализуемых в рамках наук о Земле. Комплексный характер подобных программ и наличие сложных прямых и обратных связей между гидрометеорологическими процессами, загрязнением природных сред, биосферой активно стимулируют разработки теоретических основ и системной организации математических моделей. На этом более высоком уровне системная организация оперирует с «простейшими» моделями как с элементарными объектами.
Применительно к математическому моделированию процессов возникновения и развития в атмосфере аварийных выбросов загрязняющих и токсичных веществ будем исходить из моделей физических процессов. К ним относятся модели гидротермодинамики атмосферы различных пространственно-временных масштабов, а также модели переноса и трансформации примесей, различные способы параметризации и т. п. В литературных источниках имеется достаточно много подобных разработок [21–23]. Их физический смысл и различия между ними зависят от конкретной постановки задач. В любом случае применительно к решению задачи методами численного моделирования исходят из понятий функций состояния и параметров.
Для удобства и краткости изложения воспользуемся операторной формой [19]. Обозначим векторную функцию состояния через
Вектор параметров обозначим
В операторном виде математическая модель описываемого процесса имеет следующий вид:
Здесь:
Q(Dt) — пространство функций состояния, удовлетворяющих граничным условиям;
R(Dt) — область допустимых значений параметров;
В — диагональная матрица, в которой все или часть элементов могут быть нулями;
Входящий в соотношение (1.1) оператор
Граничные и начальные условия записываются для конкретного физического содержания модели.
В частности, для математической модели переноса примесей в атмосфере, которая входит в состав уравнения (1.1) в качестве составной части, получаем уравнение
Эта модель учитывает процессы возможной трансформации веществ, турбулентного обмена и обменных процессов между природными средами: водой, воздухом и почвой.
В соотношении (1.2):
и — коэффициенты турбулентности в горизонтальных (x1,x2) и вертикальном (х3 = z) направлениях;
индексом s отмечены операторы, действующие в горизонтальных направлениях;
Отметим, что операции с вектором
Модель дополняется начальными и граничными условиями:
Здесь:
R1 и R 2 — некоторые операторы;
Для глобальной модели задаются условия периодичности всех функций на поверхности сферы, а для моделей на ограниченной территории — условия на поля концентраций на боковых границах области Dt.
Процессы взаимодействия примесей с подстилающей поверхностью, включая обменные процессы между воздухом, водой, почвой и растительностью, описываются оператором
Отметим, что в вычислительных моделях [19] используется расширительное понятие параметров, включая в их число не только численные значения некоторых величин, но и алгоритмы их вычисления. Тогда в число параметров попадают схемы реакций, алгоритмы вычислений радиационных потоков тепла, коэффициентов турбулентного обмена, а также коэффициентов в моделях взаимодействия воздушных масс с подстилающей поверхностью.