Читаем Прикладные аспекты аварийных выбросов в атмосферу. Справочное пособие полностью

3.4. Геометрические характеристики формирующихся кратковременных выбросов

Формирование кратковременного выброса существенно зависит не только от расходных характеристик

источника загрязнений и атмосферной турбулентности (через коэффициент вовлечения), но и от формы выброса и от площади его поверхности контакта с атмосферным воздухом. Через эту увеличивающуюся поверхность происходит вовлечение окружающей «холодной» среды, которая определяет газодинамические концентрационные и энергетические характеристики вещества выброса. Рассмотрим на примере истечения газа из сопла, как формируются кратковременные выбросы.

Наблюдения за истечением кратковременных струй из сопел показывают, что форма выброса в зависимости от времени работы ракетного двигателя в первые мгновения меняется от части сферы, ограниченной сегментом вращения, до полусферы. Затем форма выброса может хорошо быть смоделирована как суперпозиция усеченного конуса и полусферы. Увеличение временной координаты для неизменных атмосферных условий приводит лишь к изменению масштаба выброса, остающегося практически самоподобным.

Поскольку истечение из ракетных сопел происходит с большими скоростями, то в первом приближении может быть оправданным подход при котором считается формирование полусферического выброса происходящим за первый шаг интегрирования задачи. Далее выброс представляется суммой полусферы и удлиняющегося усеченного конуса (Рис. 3.4).

Для определения координаты центра масс полусферического выброса х* радиуса R = d0 (Рис. 3.4а) приравняем массы газа в части выброса при х ≤ х* массе газа в части выброса при х > х*.

Получаем:

В этом выражении:

  — радиус сопла;

Рис. 3.4. Схема формирования кратковременного выброса при истечении газа из сопла: а) переходный процесс возникновения выброса в окрестности сопла; б) развитый самоподобный выброс.

 — уравнение образующей полусферической поверхности выброса;

ρ1 и ρ2 — плотности газа в левой (х ≤ х*) и правой (х > х*) части выброса, соответственно.

Если предположить, что вещество выброса имеет одинаковую плотность в разных его частях, т.е. ρ1 = ρ2, то приходим к уравнению относительно искомой координаты центра массы х*. Получаем:

Перейти на страницу:

Похожие книги