Исследование физических процессов при авариях и их последствий в различных средах, как и во многих других областях науки и практики, приводит к необходимости построения моделей различных процессов и явлений, отражающих реальность. Эти задачи настолько сложны, что для успешного их решения надо умело сочетать теоретические представления в данной области знаний с использованием экспериментальных или статистических данных, относящихся к конкретному явлению.
В области протекания процессов горения детонации и взрыва в настоящее время глубоко разработаны теоретические основы этих явлений [60, 61, 77, 80, 82, 103], заранее известна структура модели и основные зависимости. Экспериментальные данные могут служить здесь лишь для определения отдельных уточняющих параметров модели.
Совершенно иная картина в области изучения формирования и развития кратковременных выбросов в реальной атмосфере. В этой области теоретические знания далеки от точных количественных представлений, а немногочисленные эксперименты [13, 33, 48-52, 133], проведенные в узких диапазонах изменений определяющих параметров, как правило, не дают общей картины явления. Следует отметить, что и в тех областях, где сравнительно хорошо разработана количественная теория (например, подъем термина в стратифицированной атмосфере), исследователь часто сталкивается с задачами, в которых по экспериментальным или статистическим данным требуется не просто определить отдельные параметры модели, но и в существенной мере восстановить общую картину явления, которая заранее может быть ясна лишь в очень грубом приближении или совсем неясна.
К таким задачам относятся, в нашем случае, задачи интерпретации геометрических измерений, когда по данным дальномерных съемок взрывных выбросов требуется определить картину формирования первичного газопылевого выброса, а также построить модель разлета твердой фазы взрыва из источника и подъема перегретого газовоздушного объема, насыщенного твердой фазой различного состава и дисперсности.
Сложная задача построения модели явления в целом, как правило, может быть разложена на этапы и фазы, на каждой из которых с успехом могут быть использованы формализованные методы обработки данных. Такими задачами являются задачи восстановления зависимостей. При решении задачи восстановления неизвестной зависимости по эмпирическим данным первым желанием бывает [84] искать зависимость как можно более общего вида, привлекая как можно большее число аргументов. Однако такой путь неизбежно сталкивается с ограниченностью экспериментального или статистического материала, которым располагает исследователь и ограниченностью вычислительных возможностей. Это противоречие разрешается при использовании структурной минимизации задачи. Она состоит в поиске вначале предельно грубой модели, а затем эта модель постепенно усложняется до достижения оптимального соотношения между точностью аппроксимации эмпирического материала и надежностью результата в условиях ограниченного объема данных.
Важным этапом построения математических моделей физического явления является его верификация, использующая данные экспериментов.
Измерения выбросов загрязняющих веществ в реальной атмосфере, кроме организационных и финансовых затрат, имеет ряд трудностей, связанных с методическими вопросами. Сравнение результатов измерений геометрических характеристик формирующихся в атмосфере объемов, полученных разными методами, является не всегда корректным и может привести к большим различиям.
В первую очередь это связано с тем, что при проведении натурных опытов с использованием измерительных устройств теодолитного типа определяются горизонтальные и вертикальные углы при наведении на граничные контуры выбросов. При этом могут возникнуть большие погрешности, связанные с частичным затенением одних частей объема другими.
Рисунок 3.11 иллюстрирует и частично объясняет противоречивость и нестыковку многих литературных данных о размерах формирующихся в атмосфере выбросов от эквивалентных источников. Кроме неизвестных различий в турбулентной активности воздуха при различных замерах геометрии выбросов существенное значение имеет и фактор места регистрации объекта. Он проявляется в форме зависимости полученных результатов от удаления измерительной аппаратуры от объекта и от его абсолютных размеров.
Из Рис. 3.11 видно, что, например, высотные размеры выбросов измеряемые в точках А и В, дают существенно разные результаты ZA =НА2 - НА1 и ZB- НВ2 - Нт , причем ZА ≠ Zв ≠ Z ,
где ZА и Zв — высоты выбросов при замерах в соответствующих точках; Z — истинный высотный его размер.
Такая же ситуация возникает при измерениях горизонтального размера выброса X.
Наряду с теодолитными замерами в некоторых натурных экспериментах проводятся самолетные и вертолетные зондировки, фотографирования дымовых выбросов и стереофотограмметрическая съемка [157].
Отметим, что измерения, производимые с летательных аппаратов, также не лишены недостатков. Самые существенные из них — влияние воздушных потоков на выброс и временной сдвиг в процессе измерения.