Читаем Прикладные аспекты аварийных выбросов в атмосферу. Справочное пособие полностью

Как было показано в главе 1, одним из основных параметров в рамках любой математической моде-|ли расчета концентраций загрязняющей примеси является высота вторичного атмосферного источника — фактически высота выброса в месте потери им динамической индивидуальности.

В большинстве современных разработок авторы пытаются использовать аналитические выражения для этого параметра, однако практика применения подобных формул имеет слишком малую область корректного использования в отношении как к тепловой мощности источника, так и к метеопараметрам.

Кроме того, часто путают динамический подъем выбросов с тепловым всплытием их разрушившихся объемов. Ошибочно считают, что тепловой подъем дает искомый результат, после чего наступает фаза атмосферной диффузии.

За границу струи, например, предлагается [136] принять изолинию однопроцентной относительной избыточной температуры.

Не всегда имеются и достаточно точные определения самого понятия подъема выброса. Например, применительно к струям факельного типа за такую высоту принимается [137,138] высоту струи, когда угол касательной к траектории ее наветренной части в сносящем ветре равен 100, в других работах за такую высоту предлагается считать подъем выброса на фиксированном расстоянии от трубы или его подъем за фиксированное время и т.д.

Некоторые авторы считают, что «потолок» выброса достигается, где он еще различим с помощью измерительной или фотографической аппаратуры.

Считается, что в случае когда радиоактивные или химические опасные вещества поступают в атмосферу посредством взрыва, можно пользоваться результатами работы Бриггса [139]. Однако результаты вычислений по приведенным там формулам также имеют весьма ограниченный диапазон применения. Поэтому рекомендуется, если это возможно, эффективную высоту источника загрязнений определять натуральными измерениями или оценкой.

Бриггс в зависимости от метеорологических условий предлагает проводить расчет подъема струи Δh по одной из нескольких модельных формул. Приведем их. Для устойчивого равновесия атмосферы предлагается выражение:

Значения параметра р, входящего в эту формулу, в зависимости от класса устойчивости атмосферы представлены в таблице 3.6.

Таблица № 3.6. Скоростной параметр р в зависимости от устойчивости атмосферы и типа местности (по данным [162])

Для высот Z > 200 м следует брать постоянную скорость ветра на высоте 200 м.

Для условий слабых ветров подъема факела на завершающем этапе подъема предлагается находить по формуле:

Δh = 5,3 • F1/4 -S3/8 -R0,

где R0 — радиус дымовой трубы.

Для условий, близких к нейтральным, при которых параметр S приближается к нулю, Бриггс предлагает следующую формулу расчета конечного подъема факела:

Δh = l,54(F/U SU2X)2/3-hs1/3

где Uх — скорость трения; hs — высота дымовой трубы.

В работе [22] предлагается формула, объединяющая начальный поток количества движения

М0 = W20R20 и плавучий поток F:

Δh = 3,75M01/2 /U(10м)+ 5F/U(10м)3

Перейти на страницу:

Похожие книги