Читаем Прикладные аспекты аварийных выбросов в атмосферу. Справочное пособие полностью

где р,р∞  — плотность газа выброса и окружающего воздуха;

V,V∞e — скорость центра массы кратковременного выброса (скорость газа струи в случае струйного выброса) и проекция скорости сносящего ветрового потока на направление движения выброса.

Критерий (3.71) означает, что выброс различим на фоне турбулентности атмосферы, если энергия его относительного движения превышает энергию турбулентных пульсаций окружающей среды.

Преодоление выбросом инверсионного слоя.

Рассмотрим общий случай состояния атмосферного воздуха около земли. Ему соответствует наличие инверсионного слоя.

На Рис.3.16 и 3.17 иллюстрируется прохождение выбросом слоя инверсии температуры толщиной ΔZ = Z3 - Z1,

где — нижняя и верхняя его высоты;

Z0 ,Zвыбр — уровень поверхности земли и высота

сформированного выброса.

На высоте Z2 внутри слоя выполняется условие равенства температур и плотностей газа выброса и окружающего воздуха. На больших высотах газ выброса, расширяющийся квазиадиабатически, будет холоднее окружающего воздуха, и только на высотах Z > Z4 вне инверсивного слоя температура выброса становится выше температуры окружающей среды.

При ΔZ > 0 и Z1 > Z0 инверсия приподнятая.

при Z1 = Z0 и ΔZ > 0 реализуется случай приземной инверсии;

случай ΔZ = 0 соответствует отсутствию инверсий.

Для получения критерия преодоления выбросом слоя инверсии воспользуемся энергетическим соотношением. В общем случае работа сил плавучести на некотором интервале высот AZ равна изменению кинетической энергии выброса на этом интервале, т.е.

Здесь

ν - объем выброса;

р — ускорение земного тяготения;

EΔz, Е0 — кинетические энергии выброса на соответствующих высотных уровнях.

При наличии инверсионного слоя его задерживающее влияние начинает проявляться с высоты Z2 выравнивания плотностей (температур) в выбросе и вне его. Поэтому естественно приравнять работу сил плавучести в интервале (Z3-Z2) изменению энергии выброса в этом интервале, т.е.

(3.72)

где р,р∞,р2,р3 — текущее значение плотности газа, плотности окружающего воздуха, а также плотности газа выброса на высотах Z2 и Zs, соответственно;

W2 и Ws — вертикальные составляющие скорости выброса на этих высотах, W = V · sin α ;

α — угол наклона вектора V к горизонту. Проанализируем уравнение (3.72). Если левая часть этого соотношения больше правой, что соответствует превышению работы сил торможения выброса в задерживающем слое изменению его кинетической энергии, то выброс как динамически целый объект остановится внутри задерживающего слоя на высоте Zg . Высота остановки его динамического подъема определится из условия (W3= 0):

Если левая часть соотношения (3.72) меньше правой, (энергия выброса больше работы сил торможения), то выброс пробивает инверсионный слой и после его преодоления поднимается до уровня стабилизации, определяемого пульсациями температуры атмосферного воздуха. Проведенный анализ движения кратковременных выбросов в атмосфере позволяет сделать следующее утверждение. Для преодоления выбросом инверсионного задерживающего слоя необходимо и достаточно выполнение следующих условий:

Условие (3.74) является необходимым, а условие (3.75) — достаточным. На практике возможно наличие нескольких слоев инверсии температуры.

Рис. 3.16. Схема прохождения струей инверсивного задерживающего слоя.

Рис. 3.17. Схема изменений температуры выброса и температуры окружающего воздуха по высотной координате, поясняющая прохождение выбросом слоя инверсии температуры.

Рис. 3.18. Траектории выбросов при различных условиях прохождения инверсионного слоя. Критерий преодоления их выбросом приобретает следующий вид:

В этих соотношениях: N — количество инверсионных задерживающих слоев; индекс «к» относится к параметрам соответствующего слоя.

Перейти на страницу:

Похожие книги