Читаем Прикладные аспекты аварийных выбросов в атмосферу полностью

Найдем теперь связь углового коэффициента расширения клуба с коэффициентом вовлечения в него атмосферного воздуха ςк. По аналогии с работой [96], в которой понятие вовлечения используется для струй, запишем выражение для вовлечения вещества в клуб в виде:_



Напомним физический смысл вовлечения — это масса окружающей среды, поступающая в выброс в единицу времени через его единичную поверхность; [Е] = кг/с/кв.м. Поэтому приращение массы выброса в виде клуба AM за интервал времени At запишется так:


ΔM = Е S Δt, (3.16)


где поверхность вовлечения


S = FRm2;


Rm — усредненное за интервал Δt значение радиуса выброса;

F — коэффициент формы (для сферы F = 4n).

С другой стороны, приращение AM можно связать с приращением эффективного радиуса выброса (Рис. 3.3):

ΔM = ρm F Rm2 ΔR, (3.17)

где ρm — усредненное в слое AR значение плотности вещества выброса.

Приравниваем (3.16) и (3.17) при учете (3.5) и связи приращения пути выброса Δl со скоростью его движения:

Δl = V Δt.

Получаем



Так как

то из (3.18) следует окончательная связь

ςк = к (3.19)

Из формулы (3.19) следует, что коэффициент вовлечения атмосферного выброса в виде компактного объема в точности равен его угловому коэффициенту в процессе расширения.



Рис. 3.3. Схема расширения клуба в атмосфере: «1» и «2» — пространственные положения клуба в моменты времени t1 и t2; 0 — виртуальный центр расширения выброса; ΔR — приращение эффективного радиуса выброса за интервал времени Δt; 1 — ось траекторного движения клуба; → ветровой поток;……. воображаемый контур клуба «2» в момент времени t1.


Рассмотрим теперь, как по физическим (метеорологическим) характеристикам атмосферы определить ее устойчивость, характеристики расширения струйного потока и вовлечения в него окружающего воздуха.

3.3. Связь устойчивости атмосферы с погодными условиями и метеорологическими параметрами

В предыдущем разделе было показано, что для расчета физических характеристик струйного потока, поднимающегося на большую высоту, необходимо знание характеристик турбулентности атмосферы (коэффициента вовлечения Q или расширения струи (коэффициента углового расширения к).

В настоящее время существуют два способа определения устойчивости (степени турбулентности) атмосферы: с использованием синоптической информации и с использованием информации о высотном изменении метеорологических параметров.

Первый способ основывается на обработке большого экспериментального материала по дымовым струям, проведенной Паскуиллом (Pasquill) и Мидом (Meade). Ссылки на работы, использующие эти данные в обобщенном виде, приводятся в работе [50]. Все многообразие погодных условий по типу турбулентной активности Паскуилл предложил условно разделить на 7 групп. Эти группы характеризуются как скоростью ветра на высоте флюгера — 10 м, так и солнечной инсоляцией (Таблицы № 3.1 и № 3.2).


Таблица № 3.1.



Таблица № 3.2



Степень инсоляции для дневного времени суток (слабая, умеренная или сильная) можно определить с использованием высоты солнца и доли неба, покрытого облаками. Если небо ясное и солнце высокое, то инсоляция интенсивная. Если небо ясное и высота солнца средняя, то инсоляция умеренная. Если небо переменное и солнце высокое, то инсоляция умеренная. Во всех остальных случаях инсоляция слабая.

Другой способ определения класса устойчивости основывается на использовании информации о градиенте температуры атмосферного воздуха на ближайшей к месту происшествия аэрологической станции [90]. Градиент температуры при этом берется в слое 20 — 120 м, а скорость ветра — на уровне флюгера (Таблица № 3.3)


Таблица № 3.3.



Или в слое 2 — 300 м и скорости ветра на уровне флюгера (Таблица № 3.4).


Таблица № 3.4.



Видоизмененная классификация определения классов устойчивости, представленная в Таблице № 3.4 [90] удобна тем, что всегда имеется синоптическая информация о температуре воздуха на высоте 2 м по синоптическим измерениям, а во-вторых слой в три раза толще, чем в Таблице № 3.2. Значит всегда можно воспользоваться одним или более радиозондовым измерением температуры и скорости атмосферного воздуха. Отметим, что для практического использования можно применять любую из Таблиц 3.1–3.4 в зависимости от наличия информации о атмосфере в районе аварии.

В работе [50] делается вывод о том, что методика Паскуилла позволяет теоретические разработки рассеяния загрязняющих веществ хорошо согласовать с экспериментальными данными. Причем стандартные отклонения горизонтального направления ветра σе при временах осреднения от 10 до 60 мин можно эмпирически связать с измеренными значениями ширины струи и относительной средней концентрацией или дозой для случая непрерывных источников.

На основе этих данных было получено соответствие между группами устойчивости Паскуилла и измеренными значениями σе. Эти данные приводятся в работе [50].

Запишем их в виде таблицы с учетом полученных нами соотношений для коэффициентов к и ς, и ςк (Таблица № 3.5).


Таблица № 3.5.



Перейти на страницу:

Похожие книги

Загадки, фокусы и развлечения
Загадки, фокусы и развлечения

Вашему вниманию предлагается очередная, четвертая, книга популярного российского ученого и педагога Я. И. Перельмана. Она составлена из двух малоизвестных сейчас произведений 20-х годов прошлого века: «Фокусы и развлечения» и «Ящик загадок и фокусов».Автор предстает перед нами в необычном качестве – мага и чародея. Он дает возможность своему читателю увидеть удивительные фокусы, раскрывая затем их математических секреты. Пораженный читатель видит необычайные и «чудесные» вещи, которые, как потом оказывается, основаны на простых арифметических расчетах.Я. И. Перельман собрал интересные опыты и изумляющие окружающих фокусы, для проделывания которых потребуются самые обыденные предметы, всегда находящиеся под рукой. Все это непременно вызовет интерес ваш и вашего ребенка к точным наукам и скрасит ваш досуг.Фокусы эти «честные и добросовестные», и, проявив сообразительность и умение рассуждать, их сможет проделать каждый. Вы узнаете нечто такое, о чем другие даже не догадываются. А показывая их своим друзьям и знакомым, вы сможете творить чудеса, как профессиональный фокусник. Вы поразите воображение своих зрителей, на их глазах превратившись в математического гения.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют первой половине XX века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Игры, упражнения для детей / Математика / Книги Для Детей / Дом и досуг