Читаем Прикладные проблемы внедрения этики искусственного интеллекта в России. Отраслевой анализ и судебная система полностью

Другим классом задач для ИИ является предиктивная аналитика на основе массивов данных, которые описывают объект в отрасли, например, пациента по истории болезни в медицинской карте, школьника или студента по портфолио достижений и успеваемости, совершившего или подозреваемого в правонарушении или преступлении по материалам уголовного дела. На основе анализа аналогичных объектов одного класса рекомендательная система может классифицировать каждый новый объект относительно набора признаков, которые также могут быть априори заданы. Таким образом, можно с некоторой вероятностью получить предсказания о склонности заключенного совершить повторное преступление, о намерении ученика получить определенную профессию, о возникновении у пациента некоторой болезни или, например, послеоперационных осложнений. Другой целью рекомендательной системы может стать выработка предписаний о том, какое может быть назначено наказание подозреваемому, какие курсы в дальнейшем предпочтительно слушать школьнику или студенту, какие препараты принимать пациенту и процедуры проходить, чтобы предотвратить негативный сценарий развития болезни [ЦНТИ МФТИ, 2020].

Также у органов власти формируются данные для профиля гражданина в той роли, в которой он выступает объектом их соответствующих полномочий: налогоплательщик, подозреваемый в уголовном или административном правонарушении, предприниматель, пенсионер и т. д. На основе системы предиктивной аналитики по профилю гражданина можно выстраивать так называемые проактивные услуги, о которых гражданин мог не знать и не инициировать их самостоятельно. При этом соответствующие возможности получения поддержки, обеспечения и реализации прав были предусмотрены государством и предложены гражданину со стороны обеспечивающих органов власти в инициативном порядке. Например, проактивными услугами можно назвать предварительный расчет пенсии, начисление социальных пособий, подбор университета или места работы [Добролюбова, 2018].

Искусственный интеллект помогает обеспечивать безопасность граждан, например, сопоставляя лица граждан, попавших в камеры наблюдения, с лицами разыскиваемых нарушителей закона, тем самым идентифицируя их положение и перемещение в случае совпадения. Таким образом, органы внутренних дел получают мощный инструмент для отслеживания разыскиваемых лиц, совершивших правонарушения, выявления лиц, которые отличаются подозрительным или противоправным поведением [Faggella, 2019]. Аналогичные инструменты компьютерного зрения применяются на дорогах для выявления нарушителей правил дорожного движения. Большой потенциал для функционала компьютерного зрения наблюдается в системах «Умный дом» – это совокупность камер, датчиков и иных управляющих элементов, которые круглосуточно накапливают и предоставляют уполномоченному наблюдателю видеоданные о состоянии квартир, домов, придомовых территорий. Таким образом, для построения «умных городов», согласно соответствующей концепции Минстроя России , система интеллектуального видеонаблюдения является ее неотъемлемым элементом.

Отдельное направление не только в бизнесе, но и в государстве – замена рутинного труда человека на программу, функционирующую на основе технологий машинного обучения для выполнения рутинных операций. Примером такой программы является чат-бот, который может отвечать на достаточно простые вопросы граждан, связанные с государственными информационными ресурсами и заданные ему в режиме реального времени в текстовом виде, например, через официальные информационные ресурсы органов власти или судов. Вопросы могут затрагивать целый ряд тем: разъяснение отдельных положений законодательства, диагностику статусов граждан для получения социальной поддержки, консультации по получению государственных услуг. С помощью чат-ботов можно реализовать простые инструменты диагностики по различным направлениям. В основу положен механизм диалога между пользователем и чат-ботом, в котором посредством задания вопросов пользователем в виде текста или голосом может быть выявлена или решена некоторая проблема. Например, с помощью простых вопросов чат-бот может диагностировать наличие некоторого заболевания (в частности, COVID-19), определить, есть ли формальные предпосылки у кандидата пройти по конкурсу на некоторую должность на государственной службе, есть ли право у заявителя получить социальную льготу или субсидию, к примеру, в сельском хозяйстве.

Таким образом, программы на основе машинного обучения позволяют заменить труд человека при решении рутинных задач или хотя бы при их выполнении снизить нагрузку на государственных служащих, переключив усилия сотрудников на более сложные и неоднозначные проблемы.

Перейти на страницу:

Похожие книги

Зачем мы бежим, или Как догнать свою антилопу. Новый взгляд на эволюцию человека
Зачем мы бежим, или Как догнать свою антилопу. Новый взгляд на эволюцию человека

Бернд Хайнрих – профессор биологии, обладатель мирового рекорда и нескольких рекордов США в марафонских забегах, физиолог, специалист по вопросам терморегуляции и физическим упражнениям. В этой книге он размышляет о спортивном беге как ученый в области естественных наук, рассказывает о своем участии в забеге на 100 километров, положившем начало его карьере в ультрамарафоне, и проводит параллели между человеком и остальным животным миром. Выносливость, интеллект, воля к победе – вот главный девиз бегунов на сверхмарафонские дистанции, способный привести к высочайшим достижениям.«Я утверждаю, что наши способность и страсть к бегу – это наше древнее наследие, сохранившиеся навыки выносливых хищников. Хотя в современном представителе нашего вида они могут быть замаскированы, наш организм все еще готов бегать и/или преследовать воображаемых антилоп. Мы не всегда видим их в действительности, но наше воображение побуждает нас заглядывать далеко за пределы горизонта. Книга служит напоминанием о том, что ключ к пониманию наших эволюционных адаптаций – тех, что делают нас уникальными, – лежит в наблюдении за другими животными и уроках, которые мы из этого извлекаем». (Бернд Хайнрих)

Берндт Хайнрих , Бернд Хайнрих

Научная литература / Учебная и научная литература / Образование и наука
Мать порядка. Как боролись против государства древние греки, первые христиане и средневековые мыслители
Мать порядка. Как боролись против государства древние греки, первые христиане и средневековые мыслители

Анархизм — это не только Кропоткин, Бакунин и буква «А», вписанная в окружность, это в первую очередь древняя традиция, которая прошла с нами весь путь развития цивилизации, еще до того, как в XIX веке стала полноценной философской концепцией.От древнекитайских мудрецов до мыслителей эпохи Просвещения всегда находились люди, которые размышляли о природе власти и хотели убить в себе государство. Автор в увлекательной манере рассказывает нам про становление идеи свободы человека от давления правительства.Рябов Пётр Владимирович (родился в 1969 г.) — историк, философ и публицист, кандидат философских наук, доцент кафедры философии Института социально-гуманитарного образования Московского педагогического государственного университета. Среди главных исследовательских интересов Петра Рябова: античная культура, философская антропология, история освободительного движения, история и философия анархизма, история русской философии, экзистенциальные проблемы современной культуры.В формате PDF A4 сохранен издательский макет книги.

Петр Владимирович Рябов

Государство и право / История / Обществознание, социология / Политика / Учебная и научная литература