Читаем Приключения Мистера Томпкинса полностью

Все произошло совершенно неожиданно, когда мистер Томпкинс менее всего рассчитывал встретить позитрон. Ощущая острую потребность побеседовать с кем-нибудь, даже с каким-нибудь глупым электроном проводимости, он приблизился к частице, медленно пролетавшей мимо и явно бывшей новичком в данной части медной проволоки. Но даже на расстоянии мистер Томпкинс понял, что ошибся в выборе собеседника и что неодолимая сила притяжения увлекает его, не давая отступить ни на шаг. Какой-то миг он пытался бороться и вырываться, но расстояние между ним и другой частицей все сокращалось, и мистеру Томпкинсу показалось, что он уже видит торжествующую улыбку на лице своего противника.

— Пустите меня! Пустите меня немедленно! — закричал мистер Томпкинс во весь голос, изо всех сил отбиваясь руками и ногами. — Я не хочу аннигилировать! Я хочу вечно проводить электрический ток!

Но все было тщетно, и окружающее пространство внезапно озарилось ослепительной вспышкой сильнейшего излучения.

— Итак, меня больше нет, — подумал мистер Томпкинс, — но как же в таком случае я могу мыслить? Может быть аннигилировало только мое тело, а душа моя улетела на квантовые небеса?

Тут он ощутил новую силу, на этот раз действовавшую мягче, которая твердо и решительно трясла его. Открыв глаза, мистер Томпкинс увидел перед собой университетского служителя.

— Простите, сэр, — сказал тот, — но лекция уже давно закончилась и нам нужно закрыть аудиторию.

Мистер Томпкинс с трудом подавлял зевоту и чувствовал себя весьма неловко.

— Спокойной ночи, сэр, — пожелал ему служитель с сочувственной улыбкой.

Глава 10 1/2

Часть предыдущей лекции, которую проспал мистер Томпкинс

В 1908 г. английский физик Джон Дальтон открыл закон кратных отношений. Он показал, что относительные пропорции различных химических элементов, необходимых для образования более сложных химических веществ, всегда могут быть выражены как отношения целых чисел и объяснил свой закон тем, что все сложные химические вещества состоят из различного числа частиц, соответствующих простым химическим элементам. Безуспешные попытки средневековой алхимии превратить один химический элемент в другой служат еще одним доказательством кажущейся неделимости мельчайших частиц вещества, которые без особых колебаний были названы своим древнегреческим именем — атомы. Данное единожды, это название закрепилось, и хотя теперь твердо установлено, что атомы Дальтона отнюдь не неделимы и в действительности состоят из большого числа более мелких, субатомных частиц, обычно мы предпочитаем закрывать глаза на филологическую непоследовательность этого названия.

Итак, то, что в современной физике принято называть атомами, отнюдь не является элементарными и неделимыми составными частями материи, о которых говорил в своих умозрительных построениях Демокрит, и термин «атом» был бы более обоснован применительно к более мелким субатомным частицам, таким как электроны и протоны, из которых состоят атомы Дальтона. Но такое изменение терминологии породило бы слишком большую путаницу, и ни один физик не заботится особенно о филологической непоследовательности существующей ныне терминологии. Поэтому мы употребляем старое название «атомы» в том же смысле, в каком его употреблял Дальтон, а электроны, протоны и другие субатомные единицы материи называем элементарными частицами.

Это название свидетельствует о том, что в настоящее время мы считаем эти субатомные частицы действительно элементарными и неделимыми в смысле Демокрита, и вы, естественно, можете спросить у меня, не повторится ли история и не выяснится ли в ходе дальнейшего развития современной физики, что так называемые элементарные частицы в действительности обладают весьма сложной внутренней структурой. Мой ответ состоит в том, что хотя нет абсолютной гарантии, что ничего такого не произойдет, имеются достаточно веские основания полагать, что на этот раз мы не ошиблись. Действительно, существуют девяносто две разновидности атомов (соответствующие девяносто двум различным химическим элементам), и каждый такой атом обладает весьма сложными характерными свойствами. В подобной ситуации само собой напрашивается упрощение — стремление свести сложную картину к более простой. С другой стороны, в современной физике известны лишь несколько различных типов элементарных частиц: электроны (отрицательно и положительно заряженные легкие частицы), нуклоны (заряженные или нейтральные тяжелые частицы, известные под названием протонов и нейтронов) и, возможно, так называемые нейтрино, природа которых полностью не выяснена.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже