Приемную антенну можно выполнить в виде большого числа крошечных антенн диполей. (Пример дипольной антенны — индивидуальная внешняя или внутренняя телевизионная антенна, только размер диполя для наземной антенны в несколько раз меньше, так как для телевидения используются метровые волны, а электроэнергию предполагают передавать в коротковолновой части дециметрового диапазона). Приемная антенна будет не только принимать сверхвысокочастотное излучение, но и преобразовывать его в постоянный ток. (Подобные антенны-преобразователи называются ректеннами.) Для этого каждый диполь снабжен миниатюрным выпрямителем, который преобразует радиоизлучение в постоянный ток. Токи всех диполей складываются и либо подаются в высоковольтную сеть постоянного тока, либо преобразуются в напряжение переменного тока. Специалисты подсчитали, что коэффициент полезного действия радиолинии электропередачи, то есть с выхода солнечных батарей до выхода в наземную высоковольтную сеть постоянного тока, составит 58 процентов, а выходная мощность, отдаваемая потребителям, — пять миллионов киловатт. Есть проекты электростанций и на десять миллионов киловатт. Разнятся они главным образом размерами солнечных батарей.
Поскольку каждый диполь снабжен выпрямителем, то ширина луча приемной десятикилометровой антенны будет такой же, как у отдельного маленького диполика, у которого в довольно широком секторе нет резко выраженного направления приема. Поэтому огромную приемную антенну не надо будет ориентировать на передающую антенну, что значительно упростит ее конструкцию. Приемную антенну можно сконструировать таким образом, чтобы она была прозрачной для света. Тогда расположенную под ней территорию можно использовать для других целей, например, для сельского хозяйства.
Выпрямление электрического тока сопровождается тепловыми потерями: выпрямительные диоды будут нагреваться, а тепло передаваться окружающему воздуху. В тепло перейдет не более 15 процентов передаваемого с орбиты излучения, и нагрев атмосферы не превысит нагрева, обычно наблюдаемого над городами.
Как и на орбитальной станции «Салют», на космической электростанции придется ориентировать на Солнце многокилометровые панели солнечных батарей, чтобы солнечные лучи падали на них отвесно. Для электростанции это наивыгоднейший режим работы. Расчеты, проведенные специалистами, показывают, что солнечные батареи должны быть сориентированы относительно Солнца с точностью до 0,5 градуса, а луч передающей антенны радиолинии передачи электроэнергии относительно наземной приемной антенны — с точностью ± 1 градус. Для управления положением и ориентации такой многокилометровой конструкции надо иметь более тысячи корректирующих двигателей. Они будут работать всего 5–10 дней в году. Так что должны быть предусмотрены рейсы космических танкеров для заправки корректирующих двигателей топливом. Для коррекции можно использовать и электронные двигатели. Тогда энергией их обеспечат солнечные батареи, но восполнять запасы рабочего тела все равно придется. В дальнейшем возможно существенное упрощение конструкции, снижение массы и соответственно стоимости космической электростанции, если удастся сделать такую солнечную батарею, чтобы она преобразовывала энергию Солнца сразу же в сверхвысокочастотное излучение (минуя постоянный ток).
По инженерным оценкам, площадь, непригодная для проживания в районе наземного приемного пункта, не будет превышать 270 квадратных километров (круг с радиусом 9,25 километра), из них около 80 квадратных километров займет наземная антенна, а остальные — буферная зона. То есть приемную антенну можно размещать неподалеку от населенных пунктов, а это означает снижение потерь на транспортировку энергии. Вне буферной зоны уровень облучения будет незначительным, меньше допустимой для человека дозы длительного сверхвысокочастотного воздействия.
Неполадки в системе наведения радиолуча из космоса не должны приводить к превышению норм облучения. Для этого система наведения должна быть исключительно точной и надежной, но если все же случится неисправность, то передатчики космической электростанции должны мгновенно отключиться.
Вопрос воздействия сверхвысокочастотного излучения на живые организмы очень важен, и в нем есть еще немало «белых пятен». В частности, как будет влиять радиоизлучение на птиц, пролетающих зону радиолуча? Есть предварительные сведения, что птицы чувствуют сверхвысокочастотное облучение при плотностях потока свыше 25 милливатт на квадратный сантиметр и стремятся покинуть опасную зону.
Смогут ли самолеты пролетать зону радиолуча? Не будет ли вред пассажирам? Не повлияет ли пролет сквозь радиолуч на работу самолетной электронной аппаратуры?.. Вопросов много. Они неизбежны, когда дело касается крупного нового проекта.