Читаем Приключения радиолуча полностью

Первым полупроводниковым материалом для транзисторов был германий. Но как оказалось, германиевые транзисторы имели много недостатков, главный из которых — нестабильность. Никакие защитные покрытия не могли уберечь их на долгое время от контакта с внешней средой — пылью, влагой… По истечении некоторого времени параметры транзистора начинали «дрейфовать», работа электронных схем зачастую нарушалась. Плохо «вели» себя германиевые транзисторы и при повышенной температуре — тоже «дрейфовали».

В 1954 году появился первый транзистор из кремния — самого распространенного на Земле твердого вещества. Кремний — термостабилен, и что еще немаловажно — образует на поверхности пленку окисла, которая помогает надежно защитить электронно-дырочные переходы от внешних воздействий. Начался период кремниевых полупроводников, продолжающийся и в наши дни.

Еще в 1952 году на ежегодной конференции по электронным компонентам, проходившей в Вашингтоне, сотрудник Британского королевского радиолокационного управления Даммер в своем докладе произнес такие пророческие слова: «С появлением транзистора и работ в области полупроводниковой техники вообще можно себе представить электронное оборудование в виде твердого блока, не содержащего соединительных проводов. Блок может состоять из слоев изолирующих, проводящих, выпрямляющих и усиливающих материалов, в которых определенные участки вырезаны таким образом, что они могли непосредственно выполнять электрические функции».

Предсказание начало сбываться уже в конце 50-х — начале 60-х годов: появились интегральные микросхемы, которым стало суждено произвести переворот в радиоэлектронике, подобно тому, как это раньше сделал транзистор.

Главную роль в перевороте сыграла планарная технология (термин «планарный» образован от английского слова «планар» — плоский). Она дала возможность перейти от изготовления каждого прибора в отдельности к изготовлению на едином полупроводниковом образце, или, как говорят, кристалле, одновременно многих тысяч транзисторов.

Что же такое интегральная схема? Это какая-либо, чаще всего типовая, электронная схема, выполненная на едином кристалле. Например, берут кристалл кремния. В поверхностном его слое с помощью методов полупроводниковой технологии (очень изощренные по точности исполнения методы) формируют элементы электрической схемы, как то: диоды, транзисторы, сопротивления (или, иначе, резисторы), емкости, индуктивности и соединения между ними. Вот вам и полупроводниковая интегральная микросхема, или, как ее иногда называют за рубежом, «чип». (В переводе с английского «чип» — не то «ломтик», не то «дешевка».)

Интересно, что интегральные микросхемы так же, как и в свое время транзисторы, встретили скептически. Критические замечания в основном были по делу. Например, нужный прибор можно было составлять только из имеющихся в наличии готовых «кирпичиков», то бишь микросхем. А это зачастую лишало возможности оптимально построить электрическую схему прибора. Здесь напрашивается аналогия с индивидуальным пошивом в ателье. Можно костюм подогнать по фигуре, не то что в магазине — бери, что предложат.

Кроме того был при производстве микросхем большой процент брака. И еще — однажды созданную схему почти невозможно изменить. Многие недостатки потом устранили, а на другие на фоне огромных возможностей, которые сулила интегральная технология, можно было не обращать внимания.

Буму в области интегральных микросхем в США во многом способствовали военные. Как всегда, они напугали налогоплательщиков «советской угрозой». Поводом послужили успехи СССР в области освоения космического пространства. Под эту шумиху они затеяли в 60-х годах модернизацию своих баллистических ракет «Минитмен». Наметили снизить с помощью микросхем массу электронного оборудования на ракете и тем самым компенсировать отставание в области ракетных двигателей. Программа потребовала организовать производство невиданными ранее темпами — по 4000 интегральных микросхем в месяц.

Мы часто слышим слово «микроэлектроника». Данному понятию есть вполне определенная количественная мера. Принято считать, что микроэлектроника начинается тогда, когда плотность монтажа превышает пять элементов (диод, транзистор, резистор и др.) на кубический сантиметр. На этом рубеже кончается миниатюризация электронной аппаратуры и начинается ее микроминиатюризация.

Но не только «плотность упаковки», то есть количество элементов на единицу площади или объема, характеризует микроминиатюрность чипа, но и такой показатель, как степень интеграции — количество элементов в одной микросхеме.

В так называемых больших интегральных схемах (БИС) содержится от 100—1000 до 10—100 тысяч элементов, а в СБИС (сверхбольших интегральных схемах) — свыше 10—100 тысяч. Есть уже название для чипов следующей степени интеграции — УБИС (ультрабольшие интегральные схемы), но число схемных элементов для них пока не определено…

«ЛЕГКИЕ ЭЛЕКТРОНЫ»

Перейти на страницу:

Все книги серии Эврика

Похожие книги

Шри ауробиндо. Эссе о Гите – I
Шри ауробиндо. Эссе о Гите – I

«Махабхарата» – одно из самых известных и, вероятно, наиболее важных священных писаний Древней Индии, в состав этого эпоса входит «Бхагавад-Гита», в сжатой форме передающая суть всего произведения. Гита написана в форме диалога между царевичем Арджуной и его колесничим Кришной, являющимся Божественным Воплощением, который раскрывает царевичу великие духовные истины. Гита утверждает позитивное отношение к миру и вселенной и учит действию, основанному на духовном знании – Карма-йоге.Шри Ауробиндо, обозначив свое отношение к этому словами «Вся жизнь – Йога», безусловно, придавал книге особое значение. Он сделал собственный перевод Гиты на английский язык и написал к ней комментарии, которые впоследствии были опубликованы под названием «Эссе о Гите». Настоящий том содержит первую часть этого произведения.

Шри Ауробиндо

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Самосовершенствование / Прочая религиозная литература / Религия / Эзотерика / Здоровье и красота
Бесконечная сила. Как математический анализ раскрывает тайны вселенной
Бесконечная сила. Как математический анализ раскрывает тайны вселенной

Популяризатор науки мирового уровня Стивен Строгац предлагает обзор основных понятий матанализа и подробно рассказывает о том, как они используются в современной жизни. Автор отказывается от формул, заменяя их простыми графиками и иллюстрациями. Эта книга – не сухое, скучное чтение, которое пугает сложными теоретическими рассуждениями и формулами. В ней много примеров из реальной жизни, которые показывают, почему нам всем нужна математика. Отличная альтернатива стандартным учебникам.Книга будет полезна всем, кто интересуется историей науки и математики, а также тем, кто хочет понять, для чего им нужна (и нужна ли) математика.На русском языке публикуется впервые.

Стивен Строгац

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Зарубежная образовательная литература / Образование и наука