Первым полупроводниковым материалом для транзисторов был германий. Но как оказалось, германиевые транзисторы имели много недостатков, главный из которых — нестабильность. Никакие защитные покрытия не могли уберечь их на долгое время от контакта с внешней средой — пылью, влагой… По истечении некоторого времени параметры транзистора начинали «дрейфовать», работа электронных схем зачастую нарушалась. Плохо «вели» себя германиевые транзисторы и при повышенной температуре — тоже «дрейфовали».
В 1954 году появился первый транзистор из кремния — самого распространенного на Земле твердого вещества. Кремний — термостабилен, и что еще немаловажно — образует на поверхности пленку окисла, которая помогает надежно защитить электронно-дырочные переходы от внешних воздействий. Начался период кремниевых полупроводников, продолжающийся и в наши дни.
Еще в 1952 году на ежегодной конференции по электронным компонентам, проходившей в Вашингтоне, сотрудник Британского королевского радиолокационного управления Даммер в своем докладе произнес такие пророческие слова: «С появлением транзистора и работ в области полупроводниковой техники вообще можно себе представить электронное оборудование в виде твердого блока, не содержащего соединительных проводов. Блок может состоять из слоев изолирующих, проводящих, выпрямляющих и усиливающих материалов, в которых определенные участки вырезаны таким образом, что они могли непосредственно выполнять электрические функции».
Предсказание начало сбываться уже в конце 50-х — начале 60-х годов: появились интегральные микросхемы, которым стало суждено произвести переворот в радиоэлектронике, подобно тому, как это раньше сделал транзистор.
Главную роль в перевороте сыграла планарная технология (термин «планарный» образован от английского слова «планар» — плоский). Она дала возможность перейти от изготовления каждого прибора в отдельности к изготовлению на едином полупроводниковом образце, или, как говорят, кристалле, одновременно многих тысяч транзисторов.
Что же такое интегральная схема? Это какая-либо, чаще всего типовая, электронная схема, выполненная на едином кристалле. Например, берут кристалл кремния. В поверхностном его слое с помощью методов полупроводниковой технологии (очень изощренные по точности исполнения методы) формируют элементы электрической схемы, как то: диоды, транзисторы, сопротивления (или, иначе, резисторы), емкости, индуктивности и соединения между ними. Вот вам и полупроводниковая интегральная микросхема, или, как ее иногда называют за рубежом, «чип». (В переводе с английского «чип» — не то «ломтик», не то «дешевка».)
Интересно, что интегральные микросхемы так же, как и в свое время транзисторы, встретили скептически. Критические замечания в основном были по делу. Например, нужный прибор можно было составлять только из имеющихся в наличии готовых «кирпичиков», то бишь микросхем. А это зачастую лишало возможности оптимально построить электрическую схему прибора. Здесь напрашивается аналогия с индивидуальным пошивом в ателье. Можно костюм подогнать по фигуре, не то что в магазине — бери, что предложат.
Кроме того был при производстве микросхем большой процент брака. И еще — однажды созданную схему почти невозможно изменить. Многие недостатки потом устранили, а на другие на фоне огромных возможностей, которые сулила интегральная технология, можно было не обращать внимания.
Буму в области интегральных микросхем в США во многом способствовали военные. Как всегда, они напугали налогоплательщиков «советской угрозой». Поводом послужили успехи СССР в области освоения космического пространства. Под эту шумиху они затеяли в 60-х годах модернизацию своих баллистических ракет «Минитмен». Наметили снизить с помощью микросхем массу электронного оборудования на ракете и тем самым компенсировать отставание в области ракетных двигателей. Программа потребовала организовать производство невиданными ранее темпами — по 4000 интегральных микросхем в месяц.
Мы часто слышим слово «микроэлектроника». Данному понятию есть вполне определенная количественная мера. Принято считать, что микроэлектроника начинается тогда, когда плотность монтажа превышает пять элементов (диод, транзистор, резистор и др.) на кубический сантиметр. На этом рубеже кончается миниатюризация электронной аппаратуры и начинается ее микроминиатюризация.
Но не только «плотность упаковки», то есть количество элементов на единицу площади или объема, характеризует микроминиатюрность чипа, но и такой показатель, как степень интеграции — количество элементов в одной микросхеме.
В так называемых больших интегральных схемах (БИС) содержится от 100—1000 до 10—100 тысяч элементов, а в СБИС (сверхбольших интегральных схемах) — свыше 10—100 тысяч. Есть уже название для чипов следующей степени интеграции — УБИС (ультрабольшие интегральные схемы), но число схемных элементов для них пока не определено…
«ЛЕГКИЕ ЭЛЕКТРОНЫ»