Читаем Принцесса или тигр полностью

Еще более заинтересовало Крейга положение дел в следующей лечебнице. Повстречав двух ее обитателей, назовем их А и В, инспектор выяснил следующее: А думает, что В не в своем уме, а В считает, что А — доктор. Инспектор принял меры, чтобы удалить одного из них из больницы. Кого и почему?

8. В восьмой лечебнице.

Обстановка в следующей лечебнице оказалась совсем запуганной, но в конечном счете Крейг и тут сумел докопаться до сути. По ходу дела он обнаружил следующие обстоятельства:

1. Для любых двух обитателей больницы А и В выполняется условие: А либо доверяет, либо не доверяет В.

2. Некоторые из обитателей больницы являются наставниками для других. Каждый обитатель имеет по крайней мере одного наставника.

3. Ни один обитатель А не желает быть наставником обитателя В, если А не считает, что В доверяет самому себе.

4. Для любого обитателя А всегда найдется обитатель В, доверяющий тем и только тем обитателям лечебницы, которые имеют по крайней мере одного наставника, которому доверяет А. (Другими словами для любого обитателя X выполняется условие: В доверяет X, если А доверяет какому-нибудь наставнику X, и В не доверяет X, если А не доверяет никакому наставнику X.)

5. Существует один обитатель лечебницы, который доверяет всем пациентам и не доверяет никому из докторов.

Инспектор Крейг довольно долго обдумывал сложившуюся ситуацию и в конечном счете все же сумел доказать, что либо один из пациентов находится в здравом уме, либо один из докторов лишился рассудка. Сумеете ли вы найти это доказательство?

9. В девятой лечебнице.

В этой лечебнице Крейг имел беседу с четырьмя ее обитателями А, В, С и D. А считал, что психическое состояние В и С одинаково. В считал, что психическое состояние А и D одинаково. Кроме того, на вопрос инспектора, заданный С: «Являетесь ли вы и D оба докторами?», С ответил: «Нет».

Все ли обстоит благополучно в данной лечебнице?

10. В десятой лечебнице.

Инспектору Крейгу этот случай представляется особенно интересным, хотя раскрыть его оказалось весьма нелегко. Первое, с чем столкнулся инспектор в этой больнице, было то обстоятельство, что ее обитатели любили объединяться в различные комитеты. При этом, как разузнал Крейг, членами комитета могли быть, с одной стороны, как врачи, так и пациенты, а с другой — как люди в здравом уме, так и лишившиеся рассудка. Далее Крейгу удалось выяснить следующие обстоятельства:

1. Все пациенты объединены в один комитет.

2. Все доктора также объединены в один комитет.

3. У каждого обитателя этой лечебницы имеется несколько приятелей, один из которых является его близким другом. К тому же у каждого обитателя лечебницы существует несколько недругов, один из которых является его злейшим врагом.

4. Для любого комитета С справедливо условие: все обитатели, чьи лучшие друзья входят в С, образуют комитет; все обитатели, чьи злейшие враги входят в С, также образуют комитет.

5. Для любых двух комитетов, скажем комитета 1 и комитета 2, существует по крайней мере один обитатель лечебницы D, у которого лучший друг считает, что D входит в комитет 1, а его злейший враг полагает, что D состоит в комитете 2.

Сопоставив все эти факты, Крейг весьма остроумным способом сумел доказать, что либо один из врачей лишился рассудка, либо один из пациентов находится в и здравом уме. Как инспектор догадался об этом?

11. Еще одно затруднение.

Крейг несколько задержался в описываемой лечебнице, поскольку его склонность к теоретическим рассуждениям и тут не дала инспектору покоя — внимание его привлекло еще несколько неясных вопросов. Например, ему было крайне любопытно узнать, объединялись ли все здравомыслящие обитатели лечебницы в один комитет, а также образовывали комитет те обитатели лечебницы, которые лишились рассудка. Не будучи в состоянии ответить на эти вопросы и исходя из условий 1–5 предыдущей задачи, он все же сумел доказать — причем лишь на основании условий 3, 4 и 5,— что обе эти группы не могут образовывать комитеты. Каким образом он это сделал?

12. Новое осложнение все в той же десятой лечебнице.

В конце концов Крейг сумел доказать еще одно утверждение, относящееся к обитателям этой больницы. Инспектор посчитал его весьма важным — ведь фактически оно позволило упростить решения двух последних задач. Само это утверждение заключалось в том, что для любых двух комитетов, комитета 1 и комитета 2, всегда должны найтись два обитателя Е и F, такие, что Е считает, будто F является членом комитета 1, а F полагает, будто Е состоит членом комитета 2. Каким образом Крейг доказал это утверждение?

13. Лечебница доктора Смолля и профессора Перро.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное