Читаем Принцесса или тигр полностью

Итак, в обследованной Крейгом лечебнице содержится по крайней мере один находящийся в здравом уме пациент или работают двое лишившихся рассудка врачей.

10, 11, 12. Поначалу мы обратимся к задачам 11 и 12, поскольку самый легкий путь к решению задачи 10 состоит в том, чтобы сначала рассмотреть решение задачи 12.

Прежде чем приступить к их решению, позвольте мне сформулировать полезное правило. Пусть мы имеем два конкретных утверждения, например X и V, про которые нам известно, что они либо оба истинны, либо оба ложны. Тогда любой обитатель лечебницы, верящий в одно из этих утверждений, должен поверить также и другому. Основание: если оба утверждения истинны, то любой обитатель, который поверит одному из них, должен находиться в здравом уме, а значит, сразу должен поверить и другому утверждению, так как оно также является истинным. Если же оба утверждения ложны, тогда обитатель лечебницы, который примет за истину одно из них, непременно должен оказаться безумным, а значит, обязательно должен поверить и другому утверждению, поскольку оно тоже будет ложным.

Обратимся теперь к решению задачи 12. Рассмотрим два произвольных комитета — комитет 1 и комитет 2. Обозначим через U множество всех тех обитателей лечебницы, чьи злейшие враги объединены в комитет 1, а через V — множество всех тех обитателей, чьи лучшие друзья принадлежат комитету 2. Согласно утверждению 4, множества U и V представляют собой комитеты. Тогда в соответствии с утверждением 5 некий обитатель, назовем его Дэн, близкий друг которого, назовем его Эдвард, полагает, что Дэн входит в группу U, а злейший враг которого, назовем его Фрэд, считает, что Дэн состоит в V. Итак, Эдвард считает, что Дэн принадлежит комитету U, а Фрэд уверен, что Дэн входит в комитет V. Наконец, по определению множества U утверждение о том, что Дэн входит в U, равносильно утверждению о том, что его злейший враг Фрэд состоит в комитете 1. Другими словами, утверждения «Дэн входит в U» и «Фрэд состоит в комитете 1» либо оба истинны, либо оба ложны. Поскольку Эдвард принимает за истину одно из них, а именно, что Дэн входит в U, то он должен также принять на веру и другое, а именно что Фрэд состоит в комитете I (вспомним тут наше вспомогательное правило). Итак, Эдвард считает, что Фрэд состоит в комитете 1.

С другой стороны, сам Фрэд полагает, что Дэн входит в комитет V. Но при этом Дэн состоит в V только в том случае, если его друг Эдвард входит в комитет 2 (по определению V). Иными словами, два этих утверждения либо оба истинны, либо оба ложны. Тогда, поскольку Фрэд полагает, что Дэн входит в V, он (Фрэд) должен считать, что Эдвард состоит в комитете 2.

Таким образом, мы имеем двух обитателей, Эдварда и Фрэда, каждый из которых убежден в следующей Эдвард — что Фрэд входит в комитет 1, а Фрэд — что Эдвард состоит в комитете 2. Это и есть решение задачи 12.

Для решения задачи 10 выберем в качестве комитета 1 множество всех пациентов, а в качестве комитете множество всех врачей — эти комитеты существуют согласно условиям 1 и 2. В соответствии с решений задачи 12 существуют два обитателя лечебницы — Эдвард и Фрэд, которые уверены в следующем: Эдвард — в том, что Фрэд входит в составленный из пациентов комитет 1, а Фрэд — в том, что Эдвард входит в составленный из врачей комитет 2. Другими словами, Эдвард считает, что Фрэд является пациентом, а Фрэд уверен, что Эдвард — врач. Тогда, следуя решению задачи 1 (заменив лишь имена Джонс и Смит на Эдвард и Фрэд), мы находим, что один из названых обитателей, то есть Эдвард или Фрэд (кто именно, не известно), должен оказаться либо лишившимся рассудка врачом, либо находящимся в здравом уме пациентом. Ясно, что в любом из этих случаев ситуация в лечебнице будет явно ненормальной.

Обращаясь теперь к задаче 11, предположим, все находящиеся в здравом уме обитатели лечебницы все ее обитатели, лишившиеся рассудка, также составляют собой комитеты, а именно комитеты 1 и 2 соответственно. Тогда, согласно полученному только что решению задачи 12, обитатели Эдвард и Фрэд будут уверены в следующем:

а) Эдвард — в том, что Фрэнк находится в здравом уме, или, иными словами, что состоит членом комитета 1;

б) Фрэд — в том, что Эдвард лишился рассудка, а значит, состоит членом комитета 2.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное