Читаем Принцесса или тигр полностью

7. Заявляя, будто все, что говорит ее муж, правда, Глория тем самым соглашается с его утверждением о том, будто она сошла с ума. Другими словами, Глория неявно утверждает, что она сама лишилась рассудка! Однако такие высказывания (как мы выяснили в обсуждении, предшествующем решениям) могут делать только упыри, и поэтому Глория обязательно должна быть упырем. Таким образом, оба супруга являются упырями.

8. Допустим, что оба супруга — люди. Тогда их утверждения о том, будто оба они являются упырями ложны, откуда следует, что они — люди, лишившиеся рассудка. В свою очередь это должно означать, что их психическое состояние одинаково, и, следовательно, второе высказывание Бориса должно быть истинным, что оказывается совершенно невозможным для человека, лишившегося рассудка. Поэтому они никак не могут быть людьми, а значит, являются упырями (причем безумными).

9. Предположим, что супруги являются людьми, Нормальный человек никак не может утверждать, будто он (или она), а также кто-либо еще — оба сошли с ума; поэтому оба супруга должны быть людьми, лишившимися рассудка. Тогда перед вами окажутся лишившиеся рассудка люди, которые высказывают истинные утверждения, будто бы оба они сошли с ума, что невозможно. Поэтому они не могут быть людьми, а значит являются упырями. (При этом они могут оказаться упырями, как находящимися в здравом уме — которые лгут, когда утверждают, будто они сошли с ума, так и безумными — которые высказывают истину, говоря, что они сошли с ума. Вспомним попутно, что упыри, лишившиеся рассудка, всегда высказывают истинные суждения, хотя вовсе не собираются этого делать.)

10. Высказывания Луиджи и Мануэллы противоречат друг другу; поэтому один из них должен быть прав, а другой должен ошибаться. Таким образом, один из них высказывает истинные утверждения, а другой — ложные. Поскольку оба они либо люди, либо упыри, утверждение, что один из них лишился рассудка, обязательно должно оказаться истиной. Ведь если оба супруга находятся в здравом уме, тогда они должны высказывать либо истину — в случае, если они люди, либо ложь — если они упыри. Таким образом, Луиджи оказывается прав, утверждая, что по крайней мере один из них лишился рассудка. Значит, Луиджи высказывает истинные утверждения; в частности, он прав, когда говорит, что они оба люди. Итак, мы доказали, что оба супруга являются людьми (и к тому же, что Луиджи нормален, а Мануэлла лишилась рассудка).

11. Назовем жителя Трансильвании заслуживающим доверия, если он высказывает правильные утверждения, и не заслуживающим доверия, если утверждения, высказываемые им, ошибочны. Заслуживающими доверия трансильванцами могут быть либо люди в здравом уме, либо безумные упыри; не заслуживают доверия люди, лишенные рассудка, и упыри в здравом уме.

Пусть теперь А заявляет, что В находится в здравом уме и, кроме того, что В — упырь. Высказанные А утверждения либо оба истинны, либо оба ложны. Если они истинны, то В — упырь в здравом уме, откуда следует, что В не заслуживает доверия. С другой стороны, если оба утверждения, высказанные А, ложны, то В должен быть лишившимся рассудка человеком, что опять-таки означает, что В не заслуживает доверия. Поэтому и в том, и в другом случае (то есть когда оба утверждения А либо истинны, либо ложны) В оказывается личностью, не заслуживающей доверия. Отсюда следует, что оба утверждения, высказанные В, ложны, и А не может быть ни человеком, ни безумцем; следовательно, А должен быть упырем в здравом уме. Это означает также, что А не заслуживает доверия; поэтому оба высказывания А являются ложными, а значит В должен оказаться лишенным рассудка человеком. Итак, ответом будет:

А — упырь, находящийся в здравом уме,

В—человек, лишившийся рассудка.

Между прочим, эта задача является лишь одной из 16 задач аналогичного типа, которые можно сформулировать и которые все обладают единственным решением.

Комбинация двух произвольных высказываний, которые А может сделать относительно личности В (одно — по поводу состояния его психики и другое- относительно его природы, то есть является ли он человеком или упырем), с двумя любыми высказываниями В относительно личности А (одним — по поводу психического состояния А и другим — относительно его природы) — а для четырех таких высказываний существует 16 различных возможностей — будет однозначно определять характеристики личностей А и В. Например, если А заявляет, что В — человек и что В в здравом уме, а В утверждает, что А — упырь и к тому же лишился рассудка, то решением такой задачи будет: В — человек, находящийся в здравом уме, а А — безумный упырь. Или пусть А утверждает, что В находится в здравом уме и что В — упырь, а В в свою очередь говорит, что А лишился рассудка и тоже является упырем. Что представляют собой А и В в этом случае?

Ответ: А — нормальный человек, а В — находящийся в здравом рассудке упырь.

Сообразили ли вы, читатель, как решаются все 16 возможных задач и почему каждая из них имеет лишь единственное решение? Если нет, то давайте рассуждать так.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное