Читаем Принцесса или тигр полностью

9. Единственным человеком, который может определить цвет своей марки, является С. Если бы марка С была красной, тогда В сразу сообразил бы, что его марка не может быть красной, рассуждая так: «Если бы моя марка тоже оказалась красной, тогда А, увидев перед собой две красные марки, сразу понял бы, что его марка не красная. Но А не знает, что его марка не красная. Следовательно, моя также не может быть красной». Это рассуждение доказывает, что если бы марка С была красной, то В знал бы, что его марка — не красная. Но В не знает, что его марка не красная, и, следовательно. марка С не может быть красной. То же самое рассуждение, в котором слово «красная» мы заменим на «желтая» показывает, что марка С не может быть также и желтой. Таким образом, на лбу у С марка зеленого цвета.

10. В условии задачи не оговорено, какая сторона доски соответствует белым фигурам, а какая — черным. Читателю может показаться, что белые ходят снизу вверх, но тогда эта позиция действительно не могла бы возникнуть! На самом же деле белые фигуры перемещаются сверху вниз и перед последним ходом позиция на доске была такой, как показано на рисунке.

Жирная черная точка в левом нижнем углу доски означает произвольную фигуру черных (из условия не узнаешь, какую — ферзя, ладью, слона или коня).

Далее белая пешка бьет черную фигуру и превращается в ладью, после чего на доске возникает приведенная в условии задачи позиция.

Конечно, читатель вполне мог бы задаться вопросом «А почему белая пешка превращается в ладью, а не в ферзя — не слишком ли это маловероятно?» Ответ заключается в том, что этот ход действительно маловероятен, но ведь любой другой ход в этом случае просто невозможен, а как однажды Шерлок Холмс проницательно заметил доктору Ватсону: «Когда мы отбрасываем невозможное—то, что остается, каким бы маловероятным оно нам ни представлялось, обязательно должно оказаться правдой».

<p>Принцесса или тигр?</p>

У Фрэнка Стоктона есть сказка, которая называется «Принцесса или тигр?» В этой сказке один узник должен угадать, в какой из двух комнат находится принцесса, а в какой — тигр. Если он укажет на первую комнату, то женится на принцессе, если на вторую, то его (вполне возможно) растерзает тигр.

В некотором царстве правил король. Однажды он тоже прочитал эту сказку.

— В самый раз для моих заключенных! — сказал он своему министру. — Только я не хочу полагаться на случайности. Пусть на дверях каждой комнаты повесят по табличке, а заключенному будет кое-что сказано о них. Если узник не дурак и способен рассуждать логически, он сумеет сохранить себе жизнь и в придачу заполучить прелестную невесту.

— Блестящая идея, ваше величество! — согласился министр.

Испытания первого дня

В самый первый день были проведены три испытания. При этом король объявил узнику, что в ходе всех трех испытаний в каждой из комнат будет находиться либо принцесса, либо тигр, хотя вполне может статься, что сразу в обеих комнатах обнаружится по тигру или там окажутся одни лишь принцессы.

1. Первое испытание.

— А что, если в обеих комнатах сидят тигры? — спросил узник. — Что же мне тогда-то делать?

— Считай, не повезло, — ответил король.

— А если в обеих комнатах окажется по красавице? — поинтересовался узник.

— Считай, подфартило, — сказал король. — Уж это ты и сам бы мог сообразить!

— Ну, хорошо, а если в одной комнате принцесса, а в другую посадили тигра, что тогда? — не успокаивался узник.

— Вот тут-то уже все зависит от тебя! Не так ли?

— Да откуда же мне знать, где кто? — сокрушенно вздохнул узник.

Тут король указал на таблички, прикрепленные к дверям каждой из комнат. На них было написано:

I В этой комнате находится принцесса, а в другой комнате сидит тигр

II В одной из этих комнат находится принцесса; кроме того, в одной из этих комнат сидит тигр

— На одной — правда, — отвечал король, — на другой — нет.

А вы на месте узника, какую бы дверь открыли? (Конечно, если вы предпочитаете принцессу тигру.)

2. Второе испытание.

Итак, первый узник спас себе жизнь и на радостях отбыл вместе с принцессой.

Таблички на дверях сменили, соответственно были подобраны и обитатели комнат. На этот раз на табличках можно было прочитать следующее:

I По крайней мере в одной из этих комнат находится принцесса

II Тигр сидит в другой комнате

— Истинны ли утверждения на табличках? — спросил второй узник.

— Может, оба истинны, а может, оба ложны, — ответил ему король.

Какую из комнат следует выбрать второму узнику?

3. Третье испытание.

Во время этого испытания король объявил, что опять утверждения на обеих табличках одновременно либо истинны, либо ложны. Надписи же были вот какие:

I Либо в этой комнате сидит тигр, либо принцесса находится в другой комнате

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное