Читаем Принцесса или тигр? полностью

В конце концов Крейг сумел доказать еще одно утверждение, относящееся к обитателям этой больницы. Инспектор посчитал его весьма важным — ведь фактически оно позволило упростить решения двух последних задач. Само это утверждение заключалось в том, что для любых двух комитетов, комитета 1 и комитета 2, всегда должны найтись два обитателя Е и F, такие, что Е считает, будто F является членом комитета 1, а F полагает, будто Е состоит членом комитета 2. Каким образом Крейг доказал это утверждение?

13. Лечебница доктора Смолля и профессора Перро.

Однако с самыми большими странностями инспектор Крейг столкнулся в последней лечебнице, которую ему довелось посетить. Лечебницей этой руководили два известных врача — доктор Смолль и профессор Перро; кроме них в штате состояло еще несколько врачей. При этом здесь неукоснительно придерживались следующих правил. Если обитатель лечебницы считал, что он является пациентом, то его называли чудаком. Если же все пациенты считали, что данный обитатель чудак, а ни один из врачей его за чудака не принимал, то такого обитателя больницы было принято именовать оригиналом. Вдобавок Крейгу удалось выяснить еще два обстоятельства: 1) по крайней мере один из обитателей больницы был вполне нормальным и 2) во всей лечебнице строго выполнялось следующее условие:

Условие С. У каждого обитателя лечебницы имеется близкий друг. При этом для любых двух обитателей А и В справедливо следующее утверждение: если А считает, что В является оригиналом, тогда близкий друг этого А полагает, что В — пациент.

Вскоре после этого открытия инспектор Крейг решил в частном порядке побеседовать с больничным руководством в лице доктора Смолля и профессора Перро. Разговор с первым из них протекал так.

Крейг. Скажите, доктор Смолль, все ли врачи в вашей больнице в здравом уме?

Смолль. Я в этом абсолютно уверен.

Крейг. А как обстоят дела с пациентами? Все ли они безумны?

Смолль. По крайней мере один из них.

Крейга поразил последний ответ — уж очень он был осторожным. Конечно, если все больные в лечебнице лишены рассудка, то утверждение, что хоть один из них безумен, представляет собой несомненную истину. Но почему доктор Смолль был так сдержан в своем утверждении?

Затем Крейг побеседовал с профессором Перро; на этот раз разговор протекал следующим образом.

Крейг. Доктор Смолль утверждает, что по крайней мере один из здешних пациентов безумен. Это правда, не так ли?

Профессор Перро. Конечно, правда. Все пациенты тут безумны! Чем же мы руководим, по-вашему?

Крейг. А как обстоят дела с врачами? Все ли они нормальны?

Профессор Перро. По крайней мере один из них нормален

Крейг. А что вы скажете о докторе Смолле? Он-то хоть нормален?

Профессор Перро. Ну, разумеется! Как вы смеете задавать мне такой вопрос?

Только в этот момент Крейг осознал весь ужас положения! В чем же он заключался?

(Те, кто читал рассказ Эдгара Аллана По «Система доктора Смолля и профессора Перро», по всей видимости, догадаются, в чем дело, еще до того, как сумеют доказать правильность найденного решения; см. также примечание в конце этой главы.)

<p>Решения</p>

1. Докажем, что либо Джонс, либо Смит (правда, не известно, кто именно) должен оказаться либо лишенным рассудка врачом, либо пациентом, находящимся в здравом уме (правда, мы вновь не знаем, кем именно).

Так, например, Джонс может оказаться либо безумцем, либо нормальным человеком. Предположим сначала, что он находится в здравом уме. Тогда его утверждения истинны и, следовательно, Смит на самом деле является врачом. Далее, если Смит лишился рассудка, то это значит, что он является врачом, лишившимся рассудка. Если же Смит находится в здравом уме, тогда его ответ будет истинным; это в свою очередь означает, что Джонс является пациентом, и притом нормальным (поскольку мы предположили, что Джонс находится в здравом уме). Тем самым доказано, что если Джонс находится в здравом уме, тогда либо он является находящимся в здравом уме пациентом, либо Смит оказывается лишившимся рассудка врачом.

Предположим теперь, что Джонс безумен. Тогда его суждения неверны, откуда следует вывод, что Смит является пациентом. При этом, если Смит не лишился рассудка, то он будет пациентом, находящимся в здравом рассудке. Если же Смит безумен, его суждения ложны; это означает, что Джонс должен быть врачом, причем врачом, лишившимся рассудка. В свою очередь это доказывает, что если Джонс безумен, то либо он является лишившимся рассудка врачом, либо Смит должен быть находящимся в здравом уме пациентом.

Подведем итоги: если Джонс нормальный человек, то либо он находящийся в здравом уме пациент, либо Смит является лишившимся рассудка врачом. Если же Джонс безумен, тогда либо он лишившийся рассудка врач, либо Смит должен быть находящимся в здравом уме пациентом.

Перейти на страницу:

Все книги серии Математическая мозаика

Как же называется эта книга?
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Меррилл Смаллиан

Научная литература

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии