«Взгляните на трактат Витрувия „Об архитектуре”, библию архитекторов, написанную через триста лет после евклидовских „Начал”, – пишет Талеб. – В этом трактате почти нет опоры на геометрию и Евклид, само собой, не упоминается. По большей части Витрувий пишет об эвристике, о том типе знания, которое архитектор передает своим ученикам… При этом строители как-то рассчитывали сопротивление материала, которое мы сегодня рассчитываем при помощи уравнений, и старинные здания по большей части стоят до сих пор» [156].
Эти примеры вовсе не доказывают, что теоретические знания бесполезны. Как раз наоборот. Теоретическое обоснование важно даже для чистых практиков, решающих деловые задачи. Очень часто бывает так, что новые теории приводят к важнейшим технологическим прорывам (скажем, атомная бомба – это следствие появления теории относительности).
Главная проблема – скорость. Изменения теории сами по себе происходят благодаря механизму обратной связи, как мы и отметили в третьей главе: наука учится на ошибках. Но когда теория терпит неудачу, скажем, математики Unilever оказываются неспособными создать модель эффективного распылителя, требуется время на то, чтобы создать новую теорию, которая объясняла бы все явления в данной области. Для получения практического знания нужно просто попробовать деталь другой формы. Подстройка, доработка, обучение на практических ошибках хороши тем, что дают быстрый результат. Теоретические прорывы могут быть чудесными, но случаются крайне редко.
В итоге технический прогресс – это сложное взаимодействие между теоретическим и практическим знанием: каждое из них поддерживает другое в восходящей спирали[34]. Однако мы часто не обращаем внимания на беспорядочный, повторяющийся, идущий снизу вверх аспект таких перемен – нам легче рассматривать изменения мира, так сказать, сверху вниз. Мы стараемся понять его сверху, а не постичь снизу.
Эта тенденция достаточно ярко заметна, среди прочего, в истории искусственного интеллекта. Когда в ходе знаменитого матча 1997 г. гроссмейстер Гарри Каспаров проиграл компьютеру Deep Blue, знаменитая «победа машины» вызвала к жизни настоящую бурю. Эта победа сплошь и рядом объяснялась тем, что «компьютеры умнее людей».
Между тем по-настоящему удивительным было то, что Каспаров продержался так долго. Люди способны анализировать три хода в секунду, не более. Deep Blue за то же время просчитывал 200 млн ходов. Он спроектирован так, чтобы изучать множество различных возможностей. Однако, и это самое важное, компьютер не в состоянии анализировать все потенциальные ходы из-за слишком большого количества комбинаций (шахматы характеризуются высоким уровнем сложности). Более того, хотя программа Deep Blue содержала немало шахматной премудрости, она не позволяла компьютеру учиться на собственных ошибках после каждой следующей игры.
Все это давало Каспарову скромный шанс на нелегкую победу, поскольку у гроссмейстера было кое-что, чем компьютер похвастать не мог: практическое знание, полученное методом проб и ошибок. Взглянув на расстановку фигур на доске, Каспаров благодаря большому опыту оценивал положение и сразу выбирал ход. Именно это практическое знание почти привело его к победе, несмотря на вопиющую разницу между быстро считающей машиной и медленно считающим человеком. Deep Blue выиграл со счетом 3½: 2½.
Но с тех пор искусственный интеллект развился [157]. Одна из популярных идей сегодня – это обучение на основе временных разностей (temporal difference learning, или TD-обучение). Разработчики программы TD-Gammon, умеющей играть в нарды, не стали закладывать в нее описания разных партий или возможность анализировать большое число ходов. Программа делает ход и предсказывает развитие ситуации, после чего сравнивает свои выводы с тем, как противник отреагировал на самом деле. Так программа совершенствует свои прогнозы от игры к игре.
По сути TD-Gammon работает методом проб и ошибок. Она выработала практические знания, круглыми сутками играя в нарды сама с собой. Когда она начала играть с людьми, то победила лучших игроков в мире. Программное обеспечение, позволившее машине учиться на ошибках, весьма сложно, но главное преимущество компьютера в том, что он никогда не спит и может практиковаться постоянно.
Другими словами, он может чаще терпеть неудачи.
3
Прежде чем перейти к тому, как применять все вышесказанное на практике и в какой форме мы можем воспроизвести эволюционный процесс в бизнесе и в частной жизни, ответим на сразу же возникающий вопрос: разве не