Таким образом, принцип стирлинга – это попеременный нагрев и охлаж-дение заключенного в изолированном пространстве рабочего тела. Однако нагрев в двигателе внешнего сгорания происходит за счет тепла, подводимого к газу извне, через стенку цилиндра. Из-за существенной теплоемкости стенки цилиндра невозможно, естественно, нагреть или охладить газ с помощью быстрого нагрева или охлаждения самой стенки. Известно, что Роберт Стирлинг ис-пользовал периодическое изменение температуры газа, применяя вытеснительный поршень (вытеснитель). Вытеснитель заставляет перемещаться газ в одну из двух полостей цилиндра, одна из которых находится при постоянной низкой, а другая при постоянной высокой температуре.
Рабочая часть современного cтирлинга представляет собой замкнутый объем, заполненный газом (рис. 1).
Верхняя часть объема – горячая, она непрерывно нагревается. Нижняя – холодная, она все время охлаждается проточной водой. В этом объеме находится цилиндр с двумя поршнями: поршнем-вытеснителем 2 и рабочим поршнем 1. Когда рабочий поршень движется вверх, газ в объеме сжимается, при движении поршня вниз – расширяется. Движением вверх – вниз поршня-вытеснителя 2 производится попеременное нагревание и охлаждение газа. Когда поршень-вытеснитель находится в верхнем положении в горячем простран-стве 7, большая часть газа оказывается вытесненной в холодное пространство 6. В это время рабочий поршень начинает двигаться вверх и сжимает холодный газ. Теперь поршень-вытеснитель устремляется вниз почти до соприкосновения с рабочим поршнем, и сжатый холодный газ перекачивается в горячее пространство. Расширение нагреваемого газа – рабочий ход. Часть энергии рабочего хода запасается на последующее сжатие холодного газа, а избыток идет на вал двигателя.
Какова же роль регенератора в этом процессе? Регенератор 5 расположен между холодным и горячим пространствами. Когда расширившийся газ движением поршня-вытеснителя перекачивается в холодную часть, он проходит через плотную ткань (плотный материал) регенератора и отдает регенератору все содержащееся в нем тепло. Во время обратного хода сжатый холодный воздух, прежде чем попасть в горячую полость (часть цилиндра), отбирает это тепло обратно.
Естественно, в реальной машине Стирлинга все выглядит не так просто. Невозможно быстро нагреть газ через сплошную стенку цилиндра, для этого необходима весьма большая поверхность нагрева. Поэтому верхняя часть замкнутого объема представляет собой развитую систему специальных труб, нагреваемых теми или иными тепловыми источниками (например, пламенем форсунки). Для полноты использования теплоты продуктов сгорания холодный воздух, подводящийся к форсунке, предварительно подогревается выхлопными газами – в связи с этим контур сгорания получается довольно сложным. Хо-лодная часть рабочего объема представляет собой тоже непростую систему.
Под рабочим поршнем находится замкнутая буферная полость, наполненная газом под давлением. Во время рабочего хода давление в этой полости повышается. Запасаемой при этом энергии достаточно для того, чтобы сжать холодный газ в рабочем объеме. Поскольку давление в цилиндре повышается плавно, а не взрывом, как в двигателях внутреннего сгорания, вибрации двигателей практически отсутствуют. У cтирлингов нет карбюраторов, систем зажигания, клапанов, свечей. Им не нужны глушители, ведь они работают почти бесшумно. Качественное сгорание топлива в форсунке полностью снимает проблему задымления.
Но если это так, то почему же ни Стирлинг, ни Эриксон не смогли добиться того успеха, которого заслуживали их изобретения?
Прежде всего, ни Стирлинг, ни Эриксон не смогли полностью использо-вать достоинства изобретенных ими регенераторов. Ведь науки о теплопередаче тогда просто не существовало. Произвести расчет регенератора было невозможно, поэтому его размеры и конструкция принимались «на глазок». А КПД двигателя внешнего сгорания весьма сильно зависит от качества работы регенератора. И еще одна, не менее важная, причина заключалась в том, что ни Стирлинг, ни Эриксон, не сообразили выполнить свои машины замкнутыми. У того и у другого рабочим телом служил воздух, который засасывался в двигатель при атмосферном давлении, а это весьма существенно отражалось на размерах машин при сравнительно малых мощностях.
Но самое удивительное и самое важное не в том, что КПД регенеративных cтирлингов и эриксонов становятся равными. Главное в том, что они становятся равными КПД цикла Карно! А отсюда вытекает, что даже при 600–650 °С теоретический КПД двигателей внешнего сгорания составляет 70%!