Читаем Природа времени: Гипотеза о происхождении и физической сущности времени полностью

— время вместе с пространством составляет четырехмерный мир;

— время не абсолютно, одновременность событий имеет смысл в одной системе отсчета или в инерциальных системах координат;

— сам ход времени зависит от движения и потому относителен. Часы, движущиеся относительно нас (чем больше скорость, тем больше эффект), всегда представляются отстающими. Это означает, что измеряемое ими время замедлено в своем беге;

— на время оказывают влияние силы тяготения — время течет тем медленнее, чем больше гравитация;

— скорость света зависит от гравитации и может изменяться только в сторону уменьшения;

— движущееся тело имеет запас кинетической энергии, и масса этого тела больше, чем масса того же тела в состоянии покоя.

Обратим внимание на то, что, полностью отказавшись от ньютоновского понятия абсолютного времени (единого в мировом масштабе), Эйнштейн не просто показал, что время всегда относительно, он это понятие прочно увязал с воздействием на любое материальное тело внешних факторов — таких как гравитация и скорость тела, зависящая от системы отсчета.

В первой половине XX века Эйнштейн ближе всех подошел к пониманию сущности времени. Однако и ему, и его сторонникам оказалась присуща некоторая непоследовательность. С позиций теории относительности, время всегда зависит от событий материального мира, от взаимодействия масс. Крупные тела (их масса, энергия и движения) порождают гравитационные поля. Время отдельных тел зависит от того, в каком гравитационном поле они находятся, и от относительной скорости их движения. Кроме этих внешних (или как бы внешних) причин, время материальных тел является порождением геометрии пространства. Допускается даже, что время может существовать независимо от материи.

В результате из теории относительности мы знаем, что время объективно существует, знаем, от чего оно зависит, но не знаем, что это такое.

Исходя из своих теоретических разработок, Эйнштейн предвидел различные события, в которых должны проявляться эффекты теорий относительности. Часть этих следствий он представил в виде мысленных экспериментов.

Например, если имеются двое часов, неподвижных относительно друг друга, и расположены они на разных расстояниях от гравитирующего тела, то быстрее будут идти те часы, которые находятся дальше от тела. (На очень далекие от массивного тела часы тяготение практически не оказывает влияния, и там время приобретает наиболее высокий темп.)

Эйнштейн иллюстрирует это положение, привлекая в мысленный эксперимент двух братьев-близнецов.

Если два брата-близнеца живут в одном доме на разных этажах, то быстрее растет тот, который живет ближе к крыше.

Но если один из братьев остался на Земле, а второй (космонавт) улетел в космос и затем вернулся, то, по Эйнштейну, замедляется старение того брата, который побывал в космосе. То есть время, затраченное на полет, было различным по часам космонавта и по часам его брата-домоседа. Темп времени в космосе был более замедленным. В чем тут дело? Эйнштейн так объясняет этот парадокс. Брат-космонавт при полете испытывал перегрузки (при разгоне и торможении) и, следовательно, испытывал гравитационное воздействие, а гравитация, по Эйнштейну, замедляет время.

Если «перегрузка» действует постоянно, то в другом мысленном эксперименте достигается поразительный эффект. Получается, что если космический корабль летит с неизменной перегрузкой, например 2g, то за 40 лет по корабельным часам он долетит до центра Галактики и вернется обратно, а на Земле за это время пройдет около 60 тысяч лет.

Значительная часть следствий теорий относительности носит характер научного предвидения и оказалась доступной для подтверждения в наблюдениях или экспериментах.

Так, блестяще подтвердилось (по мнению сторонников релятивистской физики), что луч света в сильном гравитационном поле должен изменить траекторию — искривиться. И действительно, 19 мая 1919 г. во время солнечного затмения знаменитый английский астрофизик Артур Эддингтон зафиксировал отклонение луча света от далекой звезды в поле тяготения Солнца.[6]

Начиная с 60-х годов, теория относительности получает все новые и новые экспериментальные и наблюдательные подтверждения. Вот несколько примеров в популярном изложении известного астрофизика проф. И. Новикова. «В 1968 г. американский физик И. Шапиро измерил замедление времени у поверхности Солнца… Он проводил радиолокацию Меркурия, когда тот, двигаясь вокруг Солнца, находился от него с противоположной стороны по отношению к Земле. Радиолокационный луч проходил вблизи поверхности Солнца, и из-за замедления времени ему требовалось чуть больше (времени) на прохождение туда и обратно, чем на покрытие такого же расстояния, когда Меркурий находился вдали от Солнца. Эта задержка (около одной десятитысячной доли секунды) действительно была зафиксирована и измерена» {14}.

Перейти на страницу:

Похожие книги

Бозон Хиггса
Бозон Хиггса

Джим Бэгготт, ученый, писатель, популяризатор науки, в своей книге подробно рассматривает процесс предсказания и открытия новой частицы – бозона Хиггса, попутно освещая такие вопросы фундаментальной физики, как строение материи, происхождение массы и энергии. Автор объясняет, что важность открытия частицы заключается еще и в том, что оно доказывает существование поля Хиггса, благодаря которому безмассовые частицы приобретают массу, что является необходимым условием для возникновения материи. Из книги вы узнаете о развитии физических теорий, начиная с античного понятия об атоме, и техническом прогрессе, позволившем их осуществить, а также историю обнаружения элементарных частиц.

Джим Бэгготт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Прочая научная литература / Прочая справочная литература / Образование и наука / Словари и Энциклопедии
Абсолютный минимум
Абсолютный минимум

Физика — это сложнейшая, комплексная наука, она насколько сложна, настолько и увлекательна. Если отбросить математическую составляющую, физика сразу становится доступной любому человеку, обладающему любопытством и воображением. Мы легко поймём концепцию теории гравитации, обойдясь без сложных математических уравнений. Поэтому всем, кто задумывается о том, что делает ягоды черники синими, а клубники — красными; кто сомневается, что звук распространяется в виде волн; кто интересуется, почему поведение света так отличается от любого другого явления во Вселенной, нужно понять, что всё дело — в квантовой физике. Эта книга представляет (и демистифицирует) для обычных людей волшебный мир квантовой науки, как ни одна другая книга. Она рассказывает о базовых научных понятиях, от световых частиц до состояний материи и причинах негативного влияния парниковых газов, раскрывая каждую тему без использования специфической научной терминологии — примерами из обычной повседневной жизни. Безусловно, книга по квантовой физике не может обойтись без минимального набора формул и уравнений, но это необходимый минимум, понятный большинству читателей. По мнению автора, книга, популяризирующая науку, должна быть доступной, но не опускаться до уровня читателя, а поднимать и развивать его интеллект и общий культурный уровень. Написанная в лучших традициях Стивена Хокинга и Льюиса Томаса, книга популяризирует увлекательные открытия из области квантовой физики и химии, сочетая представления и суждения современных учёных с яркими и наглядными примерами из повседневной жизни.

Майкл Файер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное