Давайте рассуждать: некое тело в прошлом излучает свет. Носители света — фотоны летят к нам многие миллионы (и миллиарды) лет, но ведь за этот период изменяется сама Вселенная — замедляется темп ее собственного времени. Отметим, что это замедление не может быть строго однородным. В первую очередь, на изменение соотношения плотности энергии излучения и плотности энергии вещества будут реагировать те локальности Вселенной, в которых сосредоточены массы, в частности, массивные макротела. Частицы и особенно фотоны (в частности, в связи с отсутствием у них массы покоя) слабо реагируют на относительное увеличение плотности вещества во Вселенной.
Итак, не только Вселенная в целом снижает темп времени, каждый ее субъект также неуклонно снижает темп собственного времени (что не исключает в отдельные (частные) периоды жизни каждого объекта развитие противоположной тенденции). Получается, что фотон покидает излучающий объект при более ускоренном времени, а мы регистрируем его во Вселенной, темп времени которой относительно замедлен. За многие миллионы лет полета в гравитационном поле Вселенной полная энергия фотонов и темп их собственного времени понижаются. Происходит своеобразная дистрофия (старение) фотонов. В великолепной монографии В. Бриля {37} утверждается: «На пути… до наблюдателя обычные фотоны в результате «старения» (т. е. диссипации их энергии на фоновых частицах) постепенно превращаются сначала в низкоэнергичные «реликтовые» фотоны, а потом и сами становятся виртуальными фоновыми частицами…»
Фотоны в процессе эволюции Вселенной становятся менее энергичными, и это соответствует фундаментальной тенденции снижения вселенского темпа времени.
Теперь, используя зависимость Планка Е = hv, где Е — энергия излучения, v — частота волны фотона, a h — постоянная Планка, видим, что при уменьшении энергии для того, чтобы сохранилась эта зависимость, должна уменьшиться частота. Но частота и длина волны связаны обратно пропорциональной зависимостью, а это значит, что при уменьшении частоты соответственно этому произойдет приращение длины волны.
То есть в спектре излучения таких волн будет наблюдаться Красное смещение.
Это новый тип красного смещения. Назреем его хроносомным
, отметив тем самым его генетическую связь с неоднородным временем.При этом приращение длины волны и темп времени тела, излучающего в различные космологические эпохи, связаны зависимостью где λ — длина волны излучения; Δλ, — приращение длины волны; tz
, t — темпы времени Вселенной соответственно в прошлом и в настоящее время; n — величина, характеризующая собственный темп времени излучающего тела (в момент излучения) в сравнении с фоновым темпом времени, т. е. это отношение собственного времени излучающего тела к усредненному собственному времени той локальности Вселенной, в которой находится излучающее тело (n может быть больше или меньше единицы, а в частном случае — равным единице).Если замедление вселенского темпа времени сосуществует с расширением Вселенной, то теперь при определении скорости и возраста разбегающихся галактик, удастся уменьшить определяемые величины за счет исключения влияния хроносомного красного смещения, а расстояния до галактик и других объектов и абсолютный возраст Вселенной придется сократить. Момент же Большого взрыва, соответственно, придется приблизить.
Претензии на новизну, следующие из декларации о том, что интенсивность темпа (хода) времени во Вселенной неуклонно понижается и что в связи с этим появляется хроносомное красное смещение, которым можно объяснить кажущееся удаление галактик, это, конечно, очень серьезно, чтобы не попытаться поискать дополнительные аргументы.
…И они есть!
Но в начале немного истории. И во времена Аристотеля, и в эпоху миропонимания Ньютона Вселенная всегда считалась стационарной. Следовал такой концепции и Эйнштейн. Через 200 лет после Ньютона, создавая свою теорию тяготения, он мучился вопросом: каким образом Вселенной удается избежать коллапса, почему под действием всемирного тяготения Вселенная вместо того, чтобы сжаться, остается стационарной? Над этим, конечно, задумывались и раньше.[29]