Рис. 2.
Угол между лучом солнца в тот момент, когда оно находится в зените в Александрии, и вертикальным шестом (гномоном) в Сиене (х) равен углу между земными радиусами (y), проведенными к Александрии и Сиене. Следовательно, отношение длины дуги окружности EF к полному кругу таково же, что и отношение длины дуги AE (расстояние от Сиены до Александрии) к окружности ЗемлиЕвклид доказал, что внутренние накрест лежащие углы, образуемые прямой, пересекающей две параллельные прямые, равны. Таким образом, угол х
, образуемый тенями в Александрии, равен углу у с вершиной в центре Земли, образуемому двумя лучами, проходящими через Александрию и Сиену (ВС и ВА). Это, в свою очередь, означает, что соотношение между длиной дуги гномона (FE) и полной окружности вокруг гномона (см. рис. 2) такое же, как и соотношение между расстоянием от Сиены до Александрии и длиной земной окружности. Эратосфен пришел к выводу, что если измерить названное относительно небольшое расстояние, то можно вычислить длину земной окружности. Хотя Эратосфен мог произвести свои измерения целым рядом разных способов, историки науки уверены, что он проделал их с помощью греческой разновидности солнечных часов, так как дуга их тени достаточно четко видна. Солнечные часы, или скафис, представляли собой бронзовую чашу с закрепленной в центре иглой – гномоном, тень которого медленно скользила вдоль линий на внутренней поверхности чаши, соответствующих часам. Однако Эратосфен воспользовался часами необычным способом. Его интересовало не положение тени на часовых отметках, а угол тени, отбрасываемой гномоном в полдень в день летнего солнцестояния. Вначале он измерил, какую часть этот угол составляет в полной окружности (измерение окружности с помощью деления ее на 360 равных частей, называемых градусами, вошло в общую практику лишь примерно столетие спустя после Эратосфена). Или, что практически то же самое, он мог измерить отношение длины дуги, отбрасываемой гномоном на поверхности сосуда, к длине всей окружности сосуда.
Рис. 3.
Вероятно, Эратосфен измерял, какую часть всей окружности солнечных часов составляет длина тени (EF), то есть какую часть полного угла составляет угол (х) между лучом и отвесной линиейВ полдень того же дня Эратосфен выяснил, что сектор, занимаемый тенью, составляет 1/50 полной окружности (мы бы сейчас сказали: составляет 7,2 градуса). Таким образом, расстояние между Александрией и Сиеной равнялось пятидесятой части протяженности всего меридиана. Умножив 5000 стадий на 50, он получил 250 000 стадий для длины земной окружности. Позже, внеся некоторые уточнения, Эратосфен увеличил цифру до 252 000 стадий (в переводе на современные меры длины и то и другое число – это чуть больше 25 000 миль). Причина, по которой Эратосфен внес данное уточнение, не совсем ясна, но, скорее всего, это как-то связано с его стремлением упростить расчет географических расстояний.
Эратосфен делил круг на шестьдесят частей, и на каждую такую часть приходилось по равному количеству в 4200 стадий при общей протяженности земной окружности в 252 000 стадий. Но какую бы из двух названных величин мы ни использовали, 250 000 или 252 000 стадий (при том что, как мы уже знаем, не существует абсолютно точной формулы перевода стадий в современные меры длины), результат, полученный Эратосфеном, лишь незначительно отличается от величины, которая считается правильной сегодня, – 24 900 миль.
Важнейшим условием успешности эксперимента Эратосфена была его картина Вселенной. Без нее он не смог бы прийти к своей идее. К примеру, в древнекитайском картографическом тексте «Хуайнаньцзы» («Философы из Хуайнани») тоже отмечается, что гномоны одинаковой высоты, но находящиеся на разных (север – юг) расстояниях друг от друга, в одно и то же время отбрасывают тени различной длины15
. Исходя из предположения, что Земля плоская, автор трактата объясняет названную разницу тем, что гномон, отбрасывающий более узкую тень, находится ближе к положению солнца на небе, и приходит к выводу, что разницу в длине теней можно использовать для расчета высоты неба!