Все видели след от реактивного самолета, след может оставаться в небе в течение нескольких минут и по нему можно следить о движении самолета. Такие следы состоят из крошечных капелек воды, которые конденсируются на выхлопных газах и создают длинное тонкое облако. Подобные признаки можно увидеть и в диффузионной камере, или камере Вильсона. Камера Вильсона – это первый трековый детектор заряженных частиц. Она была изобретена английским физиком Чарльзом Вильсоном в 1912 году. Действие камеры основано на конденсации пересыщенного пара (образовании мелких капелек жидкости) на ионах, возникающих вдоль следа (трека) заряженной частицы. По сути это стеклянная коробка, в которой находится влажный воздух при низком давлении, также имеется поршень, который может внезапно позволить воздуху ворваться в камеру. Затем водяные пары из воздуха конденсируются на любых заряженных частицах, открывая их присутствие и движение миниатюрными следами, состоящими из паров. Для физиков, занимавшихся атомной физикой в начале ХХ века, камера Вильсона была подобна телескопу у астрономов. Она делала видимым то, что недоступно невооруженному глазу.
Гамма-лучи не оставляют непосредственных следов. Они чем-то похожи на человека-невидимку, придуманного Гербертом Уэллсом – они выдают себя, на что-то наталкиваясь, как герой Уэллса сталкивался с людьми. Именно так Скобельцын и решил их поймать. Невидимые гамма-лучи выбивали электроны из атомов в камере Вильсона, их следы Скобельцын мог видеть, а по ним надеялся получить и доказательства по гамма-лучам.
Это сработало – и даже слишком хорошо. Гамма-лучи оказались настолько мощными, что в дополнение к выбиванию электронов из газа они также выбивали их и из стенки камеры, что мешало замерам, которые пытался сделать Скобельцын. Затем ему пришла в голову идея избавиться от нежелательных электронов, поставив камеру между двумя полюсами большого магнита. «Облака» внутри стали менее густыми, видимость стала лучше, и это открыло нечто совершенно неожиданное: казалось, что магнит заставляет некоторые «электроны» отклоняться «не в ту сторону».
Сегодня мы знаем, что Скобельцын видел позитроны, положительно заряженную «анти»-версию электрона. Но ничто из этого не ожидали увидеть в 1923 году. Аномальные следы ставили в тупик и также отвлекали ученого от исследований.
Новость об этих следах распространилась в научном сообществе, и через пять лет Скобельцын решил показать их на международной конференции в Кембридже. Все удивились так же, как был удивлен он, но никто не мог предложить объяснения. Удивительно то, что он демонстрировал все это в 1928 году в Кембридже, в тот же год и там же, где Дирак выступит со своим теоретическим предсказанием существования позитронов, следы которых будут напоминать электроны, «направляющиеся не в ту сторону». Однако поскольку никто в то время не имел оснований ожидать, что позитроны существуют, да еще и проявятся в эксперименте Скобельцына, Нобелевскую премию он, можно считать, упустил.
Точных данных о том, присутствовал ли Дирак на этой конференции, нет. Но скорее всего не присутствовал – он же был математиком, и только в дальнейшем выяснилось, что его работа имеет значение для космических лучей. Вероятно, Дирак даже не знал о находках Скобельцына.