С одной стороны, она менее загадочна, нежели ее представляют в своих нетленках фантасты и графоманы. Это те же самые частицы, но с противоположным зарядом (или противоположными другими характеристиками). Электрон — позитрон. Протон-антипротон. Кварк-антикварк. И так далее. При соединении материи и антиматерии — вещество аннигилирует, превращаясь в чистую энергию, то есть в фотоны, что в общем-то, можно было бы использовать как разрушительное оружие. Но антивещество чертовски трудно добывать, и совершенно точно не в промышленных масштабах.
Довольно забавен факт, что антиэлеткрон открыл Поль Дирак в 1927, когда рисовал формулы для электрона. Самая лучшая формула, описывающая электрон, содержала в себе его злого двойника. Дираку это не понравилось, в итоге он психанул и сказал, что умывает руки — вот расчеты, делайте с ними что хотите. И заметьте, что эти ученые могут открывать новые частицы без коллайдеров, с помощью карандаша и бумаги, без грантов и субсидий, которые, как известно каждому диванному профессионалу, тратятся на распил или несуществующие фонды!
Короче, через пять лет физики обнаружили антиэлектрон в реальном мире и назвали его позитроном.
С другой стороны, у антиматерии есть мерзкий секретик, от которого портится настроение у любого астрофизика или у каждого интересующегося мирозданием естествознателя. Это коварный вопрос: где антиматерия? То есть вот у нас в телескопы и микроскопы видна обычная материя везде и всюду во вселенной, а где же антивещество? Если оно аннигилировало, почему вселенная все еще существует и тогда опять вопрос, почему обычной материи больше? Это проблема, требующая очень серьезных объяснений. Может, кто-нибудь из наших читателей впечатлится прочитанным, подумает над прочитанным и догадается, как это все происходит, после чего пойдет и объяснит всем этим надмозгам из калтехов, стенфордов, МТИ и прочих логовищ бездуховности, в чем секрет асимметрии вещества. Удачи, товарищи!
Ну и наконец, предел физики материи.
Стандартная модель, которая рассказывает нам о мире частиц, все равно имеет множество темных мест, которые не объяснишь тем, что кварки и лептоны это окончательная форма материи, элементарнее и фундаментальнее которой ничего нет.
Поэтому физики с наиболее развитой фантазией пытаются предугадать еще более мелкие частички материи. Именно что предугадать и математически рассчитать их поведение. Микроскопы тут бессильны.
На сегодняшний день есть пара-тройка перспективных теорий, которые делят материю дальше. Самая известная из них — это теория струн (и ее развитие в теории суперструн и М-теории). Некоторые чудеса материи неплохо объясняются, если представить, что все, что нас окружает, на самом микроскопическом уровне представляет собой наборы одномерных струн, которые колеблются в девятимерном пространстве. И частота колебания такой струны (звук, по-нашему) и определяет свойства каждой фундаментальной частицы — кварка или лептона. Звучит, конечно, очень божественно и немного креационистски. Представьте великую вселенскую скрипку — она сыграла ноту «Ля», и в мире появились электроны, дёрнула «До» — сыпятся протоны, или, например, зазвенела «Си-бемоль» — и вселенная обогатилась нейтрино. Профессор Толкин, по-видимому, кое-что знал со своим Илуватаром и музыкой айнур, да-да.
Доказать наличие струн на сегодняшний день невозможно, да и теоретические расчеты настолько сложны (все-таки девятимерные пространства, включая время), что безумное количество математики осилит не каждый мегамозг. В теории суперструн количество измерений доведено до 11, а в М-теории предполагается, что колеблется не струна, а двухмерная пленочка (брана, как ее называют физики-теоретики). Струны изображают вот так:
На этом краткий экскурс в атомную материю у нас заканчивается. Можете бить нас за неточность изложения и обещать открыть глаза на правильную физику. Мы с интересом следим за дискуссией, которая не затихает на просторах сетевых площадок. Пишите в интернетах, и мы вас сами найдем!
Глава 7
Материя. Поля