Классики науки не захотели так просто сдаться и признать, что физику нужно переписывать с самых основ. У них появилась отличная идея: посмотреть, по какому пути на самом деле летит фотон после прохождения полупрозрачного зеркала. Давайте, сказали они, поставим на одной из траекторий детектор, который поймает фотон, и увидим, что по-настоящему происходит в интерферометре. А потом, чего уж там, как-нибудь и интерференцию объясним.
Как только они поставили детектор, поглощающий фотон на одном из путей, произошло два тревожных события.
Во-первых, детектор либо ловил, либо не ловил фотон. Это к радости физиков означало, что в момент пролета полупрозрачного зеркала, квант все-таки не раздваивается, выбирает куда полететь, и либо врезается в детектор, либо улетает к экрану.
А во-вторых… а во-вторых, исчезла интерференционная картинка. Фотон, выбравший путь до экрана, летит к нему и оставляет там след, который при массовом повторении эксперимента вдруг превращается не в полоски, а в круглое пятнышко. Вот как раз то же самое, что стрельба мячом по стене через щель. Иначе говоря, фотон как будто «узнает», что ему поставили препятствие на одной из траекторий, и он сразу теряет интерес быть волнистым. Это как такое вообще может быть?
Поэтому Борн, Гейзенберг, Бор и другие надмозги написали свой вариант происходящего, так сказать с графиками и лаборантками. Давайте нальем себе кофе с чем-нибудь полезным, выгоним всех из помещения, чтобы не мешали, помассируем виски и несколько раз прочитаем нижеследующие абзацы. Потому что сейчас будет срыв покрывал и простыней со всего того, во что вы верили и хотите верить дальше. Борн за это получил Нобелевскую премию, а мы с вами сейчас получим головную боль!
Вот, что происходит в интерферометре по мнению квантовых физиков. Фотон летит к полупрозрачному зеркалу, влетает в него, и в этот момент его состояние меняется. Да, вероятности его движения по траекториям, по-прежнему, делятся пополам. По 50 % на каждый путь. В случае, если мы захотим посмотреть, по какому пути гуляет фотон, то мы найдем его либо тут, либо там. Это логично и понятно, но есть важный нюанс: пока мы не пытаемся определить точное местонахождение частицы, она существует в вероятностном виде на обоих путях одновременно. То есть, если вы классический физик, вы говорите: фотон после разделителя летит с вероятностью 50 % либо по одному пути, либо по другому. А если вы физик квантовый, то вы говорите: фотон после разделителя находится в суперпозиции, он одновременно и там, и там: пока никто не мешает, реализуются оба варианта. Или, как правильнее говорить, фотон существует в виде волн вероятностей.
И если же мы не будем пытаться его поймать, то эти вероятности спокойненько и не торопясь «пролетят» по обоим путям и интерферируют, выдав местонахождение фотона в виде следа на экране. На этой тонкой разнице рухнула вся классическая механика.
Наличие детектора или, как это называют в физике, «наблюдение», убивает суперпозицию фотона. То есть, обнаруживая на путях детектор, суперпозиция самоуничтожается, фотон рэндомно и непредсказуемо переходит в одно из имеющихся определенных состояний, «выбирает», по какому пути ему теперь, горемычному, лететь и, собственно, туда и летит. Если вы уже заражены литературой по квантовой магии, материальности мыслей, то самое время отметить, что «наблюдение» — это не появление высшего разума с ушами возле мирового интерферометра. Наблюдение — обычная ситуация, препятствие, которое ломает фотону всё приключение, заставляя его двигаться только по одному пути вместо одновременного движения по нескольким.
Рассматривая интерференцию света как сложение двух прилетевших вероятностей, наконец, можно дать ответ на вопрос, заданный в начале главы, о том, что такое амплитуда световой волны? Ужаснитесь: амплитуда световой волны — это не высота гребня волны, не ее плотность, и не количество заряда на пике. Амплитуда световой волны, амплитуда фотона — это, после некоторых расчетов, ее/его вероятность обнаружения в некоторой области пространства. Вы только подумайте: то, что мы считали волновой характеристикой неизвестной природы, оказывается практически броском игрового кубика. Мы называем свет волной только потому, что его вероятности обнаружения подчиняются некоторым волноподобным условиям.
Классическая механика с поправками на корпускулярно-волновой дуализм утверждала, что амплитуда (интенсивность) показывает, сколько фотонов находится на каждом пути после разделения. А квантовая физика говорит, что амплитуда фотона — это вероятность его обнаружения в определенный момент времени там, где он пролетает. Вот это поворот! Мы физикой занимаемся или бросанием костей? — так примерно думали Эйнштейн с последователями.