Если по каким-то причинам местонахождение частицы становится все более и более определенным, то импульс становится, как мы уже поняли, совсем непредсказуемым. Вследствие этого совершенно обычного квантового явления неопределенность импульса может дать частице дополнительную энергию. Такая частица иногда вытворяет очень странную вещь: проходит сквозь непреодолимый барьер. В макромире, где такого, конечно же, не случается, это выглядело бы как прохождение сквозь стену или выпрыгивание из ямы без видимых причин. Муха из примера выше телепортировалась бы за пределы трубки и полетела по своим делам. Но туннелирование-таки существует и проявляется в макромире. Техника дошла до того, что мы используем явление в быту, например, в туннельном диоде или сверхпроводниках. Тот же радиоактивный распад существует благодаря эффекту туннелирования: альфа-частицы отрываются от тяжелого ядра не за счет собственных сил — ядро их на самом деле очень крепко держит (мы как-то уже рассказывали про сильное взаимодействие) — а как раз из-за существования ненулевой вероятности прорваться через энергетический барьер. И существование термоядерного синтеза внутри звезд (из-за которого наше солнце светит) также обусловлено туннелированием.
Не так давно (в 2016) ученые обнаружили, что молекула воды, оказавшись в очень узком канале кристаллической решетки берилла (минерал такой), чувствует себя неуютно, застряв в одном положении, как мы в автобусе, когда едем утром на работу. Из-за этого дискомфорта молекула начинает демонстрировать квантовые эффекты: поворачивается в этом канале, но не как макрообъект плавно и со скрипом, а мгновенно меняет свое положение, как если бы стрелка часов поворачивалась только десятиминутными интервалами — это и есть туннельный эффект. Мда, как бы это было удобно в автобусе…
Кто еще скажет, что наука это скучно?
Но это мы сейчас в 21 веке знаем о квантовых чудесах и даже принимаем их за норму. А в те годы, когда Гейзенберг предложил свой принцип, самые светлые умы человечества сошлись в нешуточной битве. Как мы уже говорили, Эйнштейну очень не нравились всякие неопределенности в физике. И в то время, когда Нильс Бор пытался создать хоть какое-то подобие квантовой теории, Эйнштейн всячески изводил его провокационными вопросами. В 30-е годы Эйнштейн и два его единомышленника — Подольский и Розен — предложили так называемый ЭПР-парадокс (по первым буквам фамилий хитрых физиков), гипотетический эксперимент, который доказывал, что неопределенность Гейзенберга можно обойти. Те, кто немного разбирались в том, что происходит, набрали себе побольше попкорна и издалека, не вмешиваясь, наблюдали как физики троллят друг друга. Заголовки газет тех времен гласили: «Эйнштейн атакует квантовую теорию: Учёный и двое его коллег находят её „неполной“, хотя и „корректной“».
Рискнем упрощенно разобрать суть парадокса — вы же за этим читаете наши лекции? Допустим Гейзенберг немного прав, и мы почему-то не можем измерить импульс и координаты частицы одновременно. Но, кажется, у Эйнштейна есть лайфхак. Давайте возьмем частицу, которая собирается распадаться! После распада образуется две частицы: они разлетятся, получив некоторые общие характеристики. Такие частицы физики называют «запутанными» (запомните этот термин). Отбросив сложную матчасть, вспомним закон сохранения импульса из классической механики — суммарный импульс тел ДО равен суммарному импульсу ПОСЛЕ. Итак, «материнская» частица распадается, а ее части разлетаются, поделив импульс между собой, как бильярдные шары.
Дальше все логично и гениально: мы измеряем местоположение первой частицы, а импульс второй частицы. Таким образом, для первой частицы мы получаем и координаты (которые измерили непосредственно) и ее импульс (который просто посчитали на калькуляторе, отняв от первоначального значения импульс второй частицы).
Осознайте, насколько коварен был Эйнштейн! Да и поставить подобный эксперимент в те годы было затруднительно (коллайдеры еще не изобрели).