Читаем Про эту вашу физику полностью

Объяснение с наноящиками, которое мы переносим на атом, надо признаться, довольно удачное. Тем не менее Мироздание делает всё, чтобы испортить хорошие и простые модели. Ящичек в нашем мысленном эксперименте был одномерным, где у электрона для материализации было всего два направления: налево и направо от произвольно выбранной точки. В атоме на орбите ядра электрон чувствует себя несколько свободнее: теперь он в трехмерном наноящике, и тут начинается дичь, одновременно расстраивающая и восхищающая физиков.

Распределение вероятностей обнаружения электрона (волновая функция) уже не простенькая синусоида на рисуночке, а сложная пространственная фигура, которую называют орбиталью.

Теперь-то читатели, осилившие все предыдущие главы, ответственно понимают, что электроны не кружатся вокруг атома, как планеты вокруг солнца, а находятся в суперпозиции всех своих состояний, вероятности обнаружения которых складываются в странные и загадочные объекты — электронные оболочки атома.

Чтобы оценить эпичность проблемы, для начала возьмем атом водорода, самый простой атом из всех известных. Вот у нас ядро, а вот один электрон копошится вокруг. Давайте посмотрим, что он тут выписывает.

Если квантовое число электрона равно единице, то есть это один условный гребень волны в наноящике, то электрон находится на самом низком энергетическом уровне. В трехмерном пространстве его вероятности размазываются вокруг ядра в виде сферы, отстоящей от ядра на некотором расстоянии. Вздумай мы ловить электрон в таком атоме, то наибольшая вероятность его обнаружения придётся как раз на окрестности данной сферы.

Но вот электрон съел подходящий по энергии фотон, и его волновая функция изменила форму. Соответственно изменился и вид орбитали: электрон может выбрать одну из двух форм атомной оболочки.

Первый вид это вся та же сфера, называемая 2s-орбиталью, у которой теперь две поверхности для нашей электронной рыбалки.

А второй вид называют гантелеобразной или 2p-орбиталью. Она получается, когда атом попадает в определённые условия, и имеет целых три варианта размещения в пространстве, которые связаны с тем, что движущийся электрон создает магнитное поле, и от этого его гантелеобразная орбиталь во внешнем магнитном поле принимает одну из трех возможных пространственных ориентаций (для таких случаев придумано квантовое магнитное число). При этом энергия 2p-орбитали больше чем у 2s-орбитали.

Давайте посмотрим рисунок для атома водорода, в котором электрон демонстрирует орбитали. Буква n — это главное квантовое число. Точечками мы пытаемся изобразить пространство наиболее вероятного обнаружения электрона. Плюсы и минусы — это знаки волновой функции (для сведения).

Когда электрон переходит к квантовому числу n=3, его расположение в наноящике атома становится еще интереснее. Теперь у него в коллекции новый набор форм, названных d-орбиталью. Рисуем, как умеем — не смеяться!

С увеличением энергии электрона формы атомных оболочек усложняются. Мы не будем рисовать орбитали для дальнейших квантовых чисел, потому что, признаемся честно, f-орбитали и g-орбитали нам не изобразить, но читателям с интернетом или с бережно сохраненным учебником по химии не составит труда посмотреть их схематические формы.

Главное, что мы уяснили, электрон, скучающий возле ядра атома, не так прост, и даже в единичном экземпляре выписывает своими вероятностями удивительные фигуры, подчиняющиеся самым изощренным математическим описаниям.

А теперь представьте, какой сумасшедший дом начинается, если вокруг атома живёт два и более электронов!

К великому счастью Природа ограничила свои творения и создала для электронов ряд нерушимых законов, наведя относительный порядок внутри атома и позволив ученым разобраться, что к чему и кто кого.

Электроны в атоме скачут по своим энергетическим уровням, переходя с орбитали на орбиталь. Но тот факт, что теперь у них есть соседи по атому, а в молекулах — еще и соседи по молекуле, заставляет электроны организовываться и вести себя прилично.

Один из таких законов для соседства электронов называется принципом запрета Паули. Запретил, конечно, не ученый с фамилией Паули. Вольфганг Паули вывел этот закон, и все облегченно вздохнули.

Электроны в атоме имеют четыре квантовых числа. Главное квантовое число мы уже знаем. Орбитальное число L нам тоже известно — оно отвечает за форму орбитали. Про магнитное квантовое число m мы тоже рассказывали. Есть еще спиновое квантовое число s — оно для электрона принимает всего два значения: +1/2 и -1/2. Если помните, то в предыдущей главе мы кое-что рассказывали про спин электрона.

Принцип запрета Паули гласит, что в атоме (и молекуле) не должно быть двух электронов с одинаковыми квантовыми числами.

У атома гелия спины двух его электронов на s-орбиталях не могут быть одновременно направлены «вверх» или «вниз». Только в противоположные стороны. Не забываем, что до измерения спины электронов находятся в суперпозиции, но никогда не получится поймать два электрона на орбитали с одинаковым спиновым числом.

Перейти на страницу:

Похожие книги

188 дней и ночей
188 дней и ночей

«188 дней и ночей» представляют для Вишневского, автора поразительных международных бестселлеров «Повторение судьбы» и «Одиночество в Сети», сборников «Любовница», «Мартина» и «Постель», очередной смелый эксперимент: книга написана в соавторстве, на два голоса. Он — популярный писатель, она — главный редактор женского журнала. Они пишут друг другу письма по электронной почте. Комментируя жизнь за окном, они обсуждают массу тем, она — как воинствующая феминистка, он — как мужчина, превозносящий женщин. Любовь, Бог, верность, старость, пластическая хирургия, гомосексуальность, виагра, порнография, литература, музыка — ничто не ускользает от их цепкого взгляда…

Малгожата Домагалик , Януш Вишневский , Януш Леон Вишневский

Семейные отношения, секс / Дом и досуг / Документальное / Образовательная литература / Публицистика
100 знаменитых загадок природы
100 знаменитых загадок природы

Казалось бы, наука достигла такого уровня развития, что может дать ответ на любой вопрос, и все то, что на протяжении веков мучило умы людей, сегодня кажется таким простым и понятным. И все же… Никакие ученые не смогут ответить, откуда и почему возникает феномен полтергейста, как появились странные рисунки в пустыне Наска, почему идут цветные дожди, что заставляет китов выбрасываться на берег, а миллионы леммингов мигрировать за тысячи километров… Можно строить предположения, выдвигать гипотезы, но однозначно ответить, почему это происходит, нельзя.В этой книге рассказывается о ста совершенно удивительных явлениях растительного, животного и подводного мира, о геологических и климатических загадках, о чудесах исцеления и космических катаклизмах, о необычных существах и чудовищах, призраках Северной Америки, тайнах сновидений и Бермудского треугольника, словом, о том, что вызывает изумление и не может быть объяснено с точки зрения науки.Похоже, несмотря на технический прогресс, человечество еще долго будет удивляться, ведь в мире так много непонятного.

Владимир Владимирович Сядро , Оксана Юрьевна Очкурова , Татьяна Васильевна Иовлева

Приключения / Публицистика / Природа и животные / Энциклопедии / Словари и Энциклопедии
Здравствуй, мобилизация! Русский рывок: как и когда?
Здравствуй, мобилизация! Русский рывок: как и когда?

Современное человечество накануне столкновения мировых центров силы за будущую гегемонию на планете. Уходящее в историческое небытие превосходство англосаксов толкает США и «коллективный Запад» на самоубийственные действия против России и китайского «красного дракона».Как наша страна может не только выжить, но и одержать победу в этой борьбе? Только немедленная мобилизация России может ее спасти от современных и будущих угроз. Какой должна быть эта мобилизация, каковы ее главные аспекты, причины и цели, рассуждают известные российские политики, экономисты, военачальники и публицисты: Александр Проханов, Сергей Глазьев, Михаил Делягин, Леонид Ивашов, и другие члены Изборского клуба.

Александр Андреевич Проханов , Владимир Юрьевич Винников , Леонид Григорьевич Ивашов , Михаил Геннадьевич Делягин , Сергей Юрьевич Глазьев

Публицистика
Былое и думы
Былое и думы

Писатель, мыслитель, революционер, ученый, публицист, основатель русского бесцензурного книгопечатания, родоначальник политической эмиграции в России Александр Иванович Герцен (Искандер) почти шестнадцать лет работал над своим главным произведением – автобиографическим романом «Былое и думы». Сам автор называл эту книгу исповедью, «по поводу которой собрались… там-сям остановленные мысли из дум». Но в действительности, Герцен, проявив художественное дарование, глубину мысли, тонкий психологический анализ, создал настоящую энциклопедию, отражающую быт, нравы, общественную, литературную и политическую жизнь России середины ХIХ века.Роман «Былое и думы» – зеркало жизни человека и общества, – признан шедевром мировой мемуарной литературы.В книгу вошли избранные главы из романа.

Александр Иванович Герцен , Владимир Львович Гопман

Биографии и Мемуары / Публицистика / Проза / Классическая проза ХIX века / Русская классическая проза